Current Issue
Vol. 15, Issue 2, 2025
Table of Contents
ISSN2095-1779
CN61-1484/R
Editor-in-Chief: Langchong He
To ensure the safety and efficacy of Chinese herbs, it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain. Spectroscopic technology can reflect the overall chemical composition and structural characteristics of Chinese herbs, with the multi-component and multitarget characteristics of Chinese herbs. This review took the genus Paris as an example, and applications of spectroscopic technology with machine learning (ML) in supply chain of the genus Paris from seeds to medicinal materials were introduced. The specific contents included the confirmation of germplasm resources, identification of growth years, cultivar, geographical origin, and original processing and processing methods. The potential application of spectroscopic technology in genus Paris was pointed out, and the prospects of combining spectroscopic technology with blockchain were proposed. The summary and prospects presented in this paper will be beneficial to the quality control of the genus Paris in all links of its supply chain, so as to rationally use the genus Paris resources and ensure the safety and efficacy of medication.
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence of SARS-CoV-2 has been marked as the third introduction of a highly pathogenic coronavirus into the human population after the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coro-navirus (MERS-CoV) in the twenty-first century. In this minireview, we provide a brief introduction of the general features of SARS-CoV-2 and discuss current knowledge of molecular immune pathogenesis, diagnosis and treatment of COVID-19 on the base of the present understanding of SARS-CoV and MERS-CoV infections, which may be helpful in offering novel insights and potential therapeutic targets for combating the SARS-CoV-2 infection.
The recent pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. 3CLpro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CLpro sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
The recent pneumonia outbreak caused by a novel coronavirus (SARS-CoV-2) is posing a great threat to global public health. Therefore, rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people's lives and preventing epidemics. It is important to establish a quick standard diagnostic test for the detection of the infectious disease (COVID-19) to prevent subsequent secondary spread. Polymerase chain reaction (PCR) is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity. Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler opera-tion. A variety of improved or new approaches also have been developed. This review summarizes the currently available detection methods for coronavirus nucleic acid. It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coro-navirus infection.
The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and dis-cusses the potential future development in this field.
MicroRNAs (miRNAs) are a family of endogenous, small (approximately 22 nucleotides in length), noncoding, functional RNAs. With the development of molecular biology, the research of miRNA bio-logical function has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Traditional methods for miRNA detection do not meet current demands. In particular, nanomaterial-based methods, nucleic acid amplification-based methods such as rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), strand-displacement amplification (SDA) and some enzyme-free amplifications have been employed widely for the highly sensitive detection of miRNA. MiRNA functional research and clinical diagnostics have been accelerated by these new techniques. Herein, we summarize and discuss the recent progress in the development of miRNA detection methods and new applications. This review will provide guidelines for the development of follow-up miRNA detection methods with high sensitivity and spec-ificity, and applicability to disease diagnosis and therapy.
Carbon nanotubes (CNTs) are a class of carbon allotropes with interesting properties that make them productive materials for usage in various disciplines of nanotechnology such as in electronics equip-ments, optics and therapeutics. They exhibit distinguished properties viz., strength, and high electrical and heat conductivity. Their uniqueness can be attributed due to the bonding pattern present between the atoms which are very strong and also exhibit high extreme aspect ratios. CNTs are classified as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the basis of number of sidewalls present and the way they are arranged spatially. Application of CNTs to improve the performance of many products, especially in healthcare, has led to an occupational and public exposure to these nanomaterials. Hence, it becomes a major concern to analyze the issues pertaining to the toxicity of CNTs and find the best suitable ways to counter those challenges. This review summarizes the toxicity issues of CNTs in vitro and in vivo in different organ systems (bio interphases) of the body that result in cellular toxicity.
Recently emerged SARS-CoV-2 caused a major outbreak of coronavirus disease 2019 (COVID-19) and instigated a widespread fear, threatening global health safety. To date, no licensed antiviral drugs or vaccines are available against COVID-19 although several clinical trials are under way to test possible therapies. During this urgent situation, computational drug discovery methods provide an alternative to tiresome high-throughput screening, particularly in the hit-to-lead-optimization stage. Identification of small molecules that specifically target viral replication apparatus has indicated the highest potential towards antiviral drug discovery. In this work, we present potential compounds that specifically target SARS-CoV-2 vital proteins, including the main protease, Nsp12 RNA polymerase and Nsp13 helicase. An integrative virtual screening and molecular dynamics simulations approach has facilitated the identifi-cation of potential binding modes and favourable molecular interaction profile of corresponding com-pounds. Moreover, the identification of structurally important binding site residues in conserved motifs located inside the active site highlights relative importance of ligand binding based on residual energy decomposition analysis. Although the current study lacks experimental validation, the structural infor-mation obtained from this computational study has paved way for the design of targeted inhibitors to combat COVID-19 outbreak.
Nanodiamonds are novel nanosized carbon building blocks possessing varied fascinating mechanical, chemical, optical and biological properties, making them significant active moiety carriers for biomedical application. These are known as the most'captivating' crystals attributed to their chemical inertness and unique properties posing them useful for variety of applications in biomedical era. Alongside, it becomes increasingly important to find, ascertain and circumvent the negative aspects associated with nano-diamonds. Surface modification or functionalization with biological molecules plays a significant role in managing the toxic behavior since nanodiamonds have tailorable surface chemistry. To take advantage of nanodiamond potential in drug delivery, focus has to be laid on its purity, surface chemistry and other considerations which may directly or indirectly affect drug adsorption on nanodiamond and drug release in biological environment. This review emphasizes on the basic properties, synthesis techniques, surface modification techniques, toxicity issues and biomedical applications of nanodiamonds. For the devel-opment of nanodiamonds as an effective dosage form, researchers are still engaged in the in-depth study of nanodiamonds and their effect on life interfaces.