Volume 13 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Zixi Zhang, Yongguo Dai, Yichao Xiao, Qiming Liu. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1089-1101. doi: 10.1016/j.jpha.2023.06.010
Citation: Zixi Zhang, Yongguo Dai, Yichao Xiao, Qiming Liu. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1089-1101. doi: 10.1016/j.jpha.2023.06.010

Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review

doi: 10.1016/j.jpha.2023.06.010
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos:. 82070356 and 81770337), the Key Project of Hunan Provincial Science and Technology Innovation, China (Grant No.: 2020SK1013), and the Hunan Provincial Natural Science Foundation of China (Grant No.: 2021JJ30033).

  • Received Date: Mar. 20, 2023
  • Accepted Date: Jun. 20, 2023
  • Rev Recd Date: May 15, 2023
  • Publish Date: Oct. 30, 2023
  • Catalpol, an iridoid glucoside isolated from Rehmannia glutinosa, has gained attention due to its potential use in treating cardio-cerebrovascular diseases (CVDs). This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs, such as atherosclerosis, myocardial ischemia, infarction, cardiac hypertrophy, and heart failure. The review also explores the compound's anti-oxidant, anti-inflammatory, and anti-apoptotic characteristics, emphasizing the role of vital signaling pathways, including PGC-1α/TERT, PI3K/Akt, AMPK, Nrf2/HO-1, estrogen receptor (ER), Nox4/NF-κB, and GRP78/PERK. The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications, thrombosis, and other cardiovascular-related conditions. Although clinical studies specifically addressing catalpol's impact on CVDs are scarce, the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients. Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.
  • loading
  • A. Shaito, D.T.B. Thuan, H.T. Phu, et al., Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety, Front. Pharmacol. 11 (2020), 422.
    M. Schulz, K. Krueger, N. Griese-Mammen, et al., Pharmaceutical care and cardiovascular diseases. The Pharmacist Guide to Implementing Pharmaceutical Care, Springer, Cham, 2019, pp. 353-367.
    S. Hu, R. Gao, L. Liu, et al., Summary of the 2018 report on cardiovascular diseases in China, Chin. Circ. J. 34 (2019) 209-220.
    N. Garcia, C. Zazueta, L. Aguilera-Aguirre, Oxidative stress and inflammation in cardiovascular disease, Oxid. Med. Cell. Longev. 2017 (2017), 5853238.
    M.C. Kander, Y. Cui, Z. Liu, Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases, J. Cell. Mol. Med. 21 (2017) 1024-1032.
    T. Xu, W. Ding, X. Ji, et al., Oxidative stress in cell death and cardiovascular diseases, Oxid. Med. Cell. Longev. 2019 (2019), 9030563.
    N.N. Wu, Y. Zhang, J. Ren, Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging, Oxid. Med. Cell. Longev. 2019 (2019), 9825061.
    N. Ruparelia, J.T. Chai, E.A. Fisher, et al., Inflammatory processes in cardiovascular disease: A route to targeted therapies, Nat. Rev. Cardiol. 14 (2017) 133-144.
    S. Zhong, L. Li, X. Shen, et al., An update on lipid oxidation and inflammation in cardiovascular diseases, Free Radic. Biol. Med. 144 (2019) 266-278.
    B. Jiang, R.F. Shen, J. Bi, et al., Catalpol: A potential therapeutic for neurodegenerative diseases, Curr. Med. Chem. 22 (2015) 1278-1291.
    Z.-Q. Liu, X. Yang, T. Wang, et al., Pharmacokinetics of different administration routes of catalpol, J. Southwest Univ. Nat. Sci. Ed. (2014) 222-226.
    N. Roensted, E. Gobel, H. Franzyk, et al., Chemotaxonomy of Plantago. iridoid glucosides and caffeoyl phenylethanoid glycosides, Phytochemistry 55 (2000) 337-348.
    S. Damtoft, Biosynthesis of catalpol, Phytochemistry 35 (1994) 1187-1189.
    L. Zhang, K. Chen, Y. Li, Bioactivities of natural catalpol derivatives, Curr. Med. Chem. 26 (2019) 6149-6173.
    H. Li, S.-Q. Yang, H. Wang, et al., Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum, Phytochemistry 71 (2010) 1690-1694.
    P.-H. Sung, F.-C. Huang, Y.-Y. Do, et al., Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid, J. Agric. Food Chem. 59 (2011) 4637-4643.
    P. Sun, S. Song, L. Zhou, et al., Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa, Int. J. Mol. Sci. 13 (2012) 13748-13763.
    F. Geu-Flores, N.H. Sherden, V. Courdavault, et al., An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis, Nature 492 (2012) 138-142.
    S. Damtoft, S.R. Jensen, C.U. Jessen, et al., Late stages in the biosynthesis of aucubin in Scrophularia, Phytochemistry 33 (1993) 1089-1093.
    Q. Wang, M. Xing, W. Chen, et al., HPLC-APCI-MS/MS method for the determination of catalpol in rat plasma and cerebrospinal fluid: Application to an in vivo pharmacokinetic study, J. Pharm. Biomed. Anal. 70 (2012) 337-343.
    J. Xu, J. Wu, L. Zhu, et al., Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry, Food Chem. 135 (2012) 2277-2286.
    J. Suomi, H. Siren, M. Jussila, et al., Determination of iridoid glycosides in larvae and adults of butterfly Melitaea cinxia by partial filling micellar electrokinetic capillary chromatography-electrospray ionisation mass spectrometry, Anal. Bioanal. Chem. 376 (2003) 884-889.
    R. Lu, Y. Gu, D. Si, et al., Quantitation of catalpol in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry and its pharmacokinetic study, J. Chromatogr. B 877 (2009) 3589-3594.
    G. Cao, X. Cong, H. Cai, et al., Simultaneous quantitation of eight active components in crude and processed Radix Scrophulariae extracts by high performance liquid chromatography with diode array detector, Chin. J. Nat. Med. 10 (2012) 213-217.
    Y.-Y. Luo, S.-Q. Zhang, J.-Z. Suo, et al., Determination of catalpol in Radix rehmanniae by high performance liquid chromatography, Chin. Pharm. J. 29 (1994) 38-39.
    X.E. Li, S.L. Yang, J.S. Yang, Comparison and correlative analysis on characters of Rehmannia glutinosa Libosch. Varieties, Zhongguo Yi Xue Ke Xue Yuan Xue Bao 23 (2001) 560-562.
    Y. Tamura, S. Nishibe, Changes in the concentrations of bioactive compounds in plantain leaves, J. Agric. Food Chem. 50 (2002) 2514-2518.
    Y. He, H. Zhu, W. Li, et al., HPLC determination of catalpol in cerebrospinal fluid of rats, Zhongguo Zhong Yao Za Zhi 34 (2009) 1717-1719.
    J. Tao, M. Zhao, D. Wang, et al., UPLC-Q-TOF/MS-based screening and identification of two major bioactive components and their metabolites in normal and CKD rat plasma, urine and feces after oral administration of Rehmannia glutinosa Libosch extract, J. Chromatogr. B 1001 (2015) 98-106.
    J. Tao, M. Zhao, D. Wang, et al., Biotransformation and metabolic profile of catalpol with human intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, J. Chromatogr. B 1009-1010 (2016) 163-169.
    Z. Xiang, Detection and identification of catalpol metabolites in the rat plasma, urine and faeces using ultra-high performance liquid chromatography-Q exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, Curr. Drug Metab. 22 (2021) 173-184.
    B. Xue, B. Ma, Q. Zhang, et al., Pharmacokinetics and tissue distribution of aucubin, ajugol and catalpol in rats using a validated simultaneous LC-ESI-MS/MS assay, J. Chromatogr. B 1002 (2015) 245-253.
    M. Zhao, D. Qian, P. Liu, et al., Comparative pharmacokinetics of catalpol and acteoside in normal and chronic kidney disease rats after oral administration of Rehmannia glutinosa extract, Biomed. Chromatogr. 29 (2015) 1842-1848.
    J. Suomi, S.K. Wiedmer, M. Jussila, et al., Determination of iridoid glycosides by micellar electrokinetic capillary chromatography-mass spectrometry with use of the partial filling technique, Electrophoresis 22 (2001) 2580-2587.
    J. Suomi, H. Siren, S.K. Wiedmer, et al., Isolation of aucubin and catalpol from Melitaea cinxia larvae and quantification by micellar electrokinetic capillary chromatography, Anal. Chim. Acta 429 (2001) 91-99.
    H.-K. Wu, W. Chuang, S.-J. Sheu, Separation of nine iridoids by capillary electrophoresis and high-performance liquid chromatography, J. Chromatogr. A 803 (1998) 179-187.
    J. Suomi, S.K. Wiedmer, M. Jussila, et al., Analysis of eleven iridoid glycosides by micellar electrokinetic capillary chromatography (MECC) and screening of plant samples by partial filling (MECC)-electrospray ionisation mass spectrometry, J. Chromatogr. A 970 (2002) 287-296.
    M.D. Bowers, Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae, J. Chem. Ecol. 29 (2003) 2359-2367.
    E. Helfrich, H. Rimpler, Iridoid glycosides from Gmelina philippensis, Phytochemistry 54 (2000) 191-199.
    L. Wu, R. Lu, Y. Gu, et al., Pharmacokinetics and bioavalibability of catalpol in rats, Chin. J. Clin. Pharmacol. Ther. 17 (2012) 126-130.
    Y. Feng, Z. Liu, Y. Peng, et al., Validated LC-MS method for simultaneous quantitation of catalpol and harpagide in rat plasma: Application to a comparative pharmacokinetic study in normal and diabetic rats after oral administration of Zeng-Ye-Decoction, Biomed. Chromatogr. 27 (2013) 1503-1510.
    H. Yang, Q. Hao, J. Cheng, et al., Exploring the compatibility mechanism of ShengDiHuang Decoction based on the in situ single-pass intestinal perfusion model, Biopharm. Drug Dispos. 41 (2020) 44-53.
    C. Alonso, M. Vicario, M. Pigrau, et al., Intestinal barrier function and the brain-gut axis. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, Springer, New York, 2014, pp. 73-113.
    Z.Q. Liu, Pharmacokinetics of catalpol after different administrations in rats [master’s thesis], Chongqing: Southwest University, 2014.
    S. Chen, J. Zhou, M. Li, et al., Metabolic change of catalpol in Rehmannia glutinosa Libosch in rats, J. Emerg. Tradit. Chin. Med. 27 (2018) 1197-1200.
    Q. Chen, X. Qi, W. Zhang, et al., Catalpol inhibits macrophage polarization and prevents postmenopausal atherosclerosis through regulating estrogen receptor alpha, Front. Pharmacol. 12 (2021), 655081.
    J. Liu, D. Zhang, Amelioration by catalpol of atherosclerotic lesions in hypercholesterolemic rabbits, Planta Med. 81 (2015) 175-184.
    Y. Zhang, C. Wang, Y. Jin, et al., Activating the PGC-1α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production, DNA damage, and telomere function: Implications on mitochondria and telomere link, Oxid. Med. Cell. Longev. 2018 (2018) 1-16.
    J. Liu, C. Zheng, X. Hao, et al., Catalpol ameliorates diabetic atherosclerosis in diabetic rabbits, Am. J. Transl. Res. 8 (2016) 4278-4288.
    P. Cao, M. Cheng, D. Shen, et al., Protective effect of catalpol on the vascular endothelial cells in the aging rats, Chin. J. Integr. Med. Cardio Cerebrovasc. Dis. 16 (2018) 2630-2634.
    J.-Y. Liu, Catalpol protect diabetic vascular endothelial function by inhibiting NADPH oxidase, China J. Chin. Mater. Med. 39 (2014) 2936-2941.
    C.M. Lin, B. Wang, W.J. Fang, et al., Catalpol ameliorates neointimal hyperplasia in diabetic rats, Planta Med. 85 (2019) 406-411.
    D. Wan, X. Yang, Y. Wang, et al., Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats’ stroke model, J. Ethnopharmacol. 191 (2016) 169-179.
    H. Wang, X. Xu, Y. Yin, et al., Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF, Phytomedicine 78 (2020), 153300.
    L. Sun, X. Zhou, J. Liu, et al., Effect of Shengdi catalpol in promoting angiogenesis and neural function remodeling by regulating vascular endothelial growth factor and its receptors to activate Notch signaling pathway, Pract. J. Cardiac Cereb. Pneum. Vasc. Dis. 29 (2021) 63-68.
    H. Wang, H. Ran, Y. Yin, et al., Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling, Acta Pharmacol. Sin. 43 (2022) 1670-1685.
    L. Tan, D. Cui, H. Zhu, et al., Effect of catalpol on structure of neurovascular unit after focal cerebral ischemia, Chin. Pharmacol. Bull. 30 (2014) 44-48.
    J. Zhou, The construction of behavior testing method which of the focal cerbral ischemia in rats and the catalpa yrging the nerve blood vessel to restore observation [master’s thesis], Chongqing: ChongQing Medical University, 2008.
    Q. Xue, Y. Liu, R. He, et al., Lyophilized Powder of catalpol and puerarin protects neurovascular unit from stroke, Int. J. Biol. Sci. 12 (2016) 367-380.
    Y. Liu, Q. Tang, S. Shao, et al., Lyophilized Powder of catalpol and puerarin protected cerebral vessels from ischemia by its anti-apoptosis on endothelial cells, Int. J. Biol. Sci. 13 (2017) 327-338.
    X.-K. Song, J.-Y. Cai, T.-Y. Zong, et al., Protective effect of different dose of catalpol preconditioning on ischemiareperfusion injured myocardium in rats, China Med. Engineer. 19 (2011) 26-28.
    F. Bi, Y. Xu, Q. Sun, Catalpol pretreatment attenuates cardiac dysfunction following myocardial infarction in rats, Anatol. J. Cardiol. 19 (2018) 296-302.
    C. Huang, Y. Cui, L. Ji, et al., Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult, Pharm. Biol. 51 (2013) 463-473.
    H. Ge, W. Lin, Z. Lou, et al., Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway, Microvasc. Res. 140 (2022), 104302.
    F.-J. Bi, H. Zhang, J. Hu, Protective effect of catalpol on isoproterenol-induced myocardial injury in rats, J. China Med. Univ. 42 (2013) 244-248.
    F. Bi, Protective effect of catalpol on isoproterenol-induced myocardial injury in Wistar rats [master’s thesis], Liaoning: China Medical University, 2012.
    J. Zeng, F. Huang, Y. Tu, et al., Protective effect of catalpol on myocardium in rats with isoprenaline-induced myocardial infarcts via angiogenesis through endothelial progenitor cells and Notch1 signaling pathway, Pharmacol. Pharm. 4 (2013) 619-627.
    X.-H. Cui, S.-M. Liang, P.-A. Yao, et al., Experimental study of catalpol against myocardial hypertrophy induced by isoproterenol in mice, Shanghai J. Tradit. Chin. Med. 51 (2017) 73-75.
    G. Zou, W. Zhong, F. Wu, et al., Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis, Biochimie 165 (2019) 90-99.
    J. Yan, G. Zou, Effect of Catalpa on cardiac function and cardiac tissue of diabetic cardiomyopathy rats, Jilin J. Chin. Med. 38 (2018) 573-575.
    R. Xu, D. Wang, Y. Wang, et al., Effects of catalpol on oxidative stress and cardiac function in type 2 diabetic rats, Tradit. Chin. Med. 41 (2019) 476-480.
    J.F. Bentzon, F. Otsuka, R. Virmani, et al., Mechanisms of plaque formation and rupture, Circ. Res. 114 (2014) 1852-1866.
    R. Ross, Atherosclerosis - An inflammatory disease, N Engl J. Med. 340 (1999) 115-126.
    J.A. Berliner, M. Navab, A.M. Fogelman, et al., Atherosclerosis: Basic mechanisms, Circulation 91 (1995) 2488-2496.
    H. Ren, D. Wang, L. Zhang, et al., Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice, Aging 11 (2019) 9461-9477.
    H. Zhu, Y. Wang, Z. Liu, et al., Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed, Chin. Med. 11 (2016) 1-10.
    X. Tian, Q. Xiong, L. Chen, et al., Intervention of catalpol on high-fat diet induced nonalcoholic fatty liver disease in mice, Zhongguo Yi Xue Ke Xue Yuan Xue Bao 41 (2019) 746-755.
    Q. Bao, X. Shen, L. Qian, et al., Anti-diabetic activities of catalpol in db/db mice, Korean J. Physiol. Pharmacol. 20 (2016), 153.
    X. Li, Z. Xu, Z. Jiang, et al., Hypoglycemic effect of catalpol on high-fat diet/streptozotocin-induced diabetic mice by increasing skeletal muscle mitochondrial biogenesis, Acta Biochim. Biophys. Sin (Shanghai) 46 (2014) 738-748.
    M.A. Gimbrone Jr, G. Garcia-Cardena, Endothelial cell dysfunction and the pathobiology of atherosclerosis, Circ. Res. 118 (2016) 620-636.
    J. Liu, D. Zhang, W. Li, et al., Effect of catalpol on NF-κB activation and reducing endothelial cells injury induced by ox-LDL, Chin. J. Exp. Tradit. Med. Formulae 22 (2016) 118-122.
    Z. Li, S. Sun, J. Nie, et al., Study on protective effects of catalpol on HUVECs injured by high glucose, Pharmacol. Clin. Chin. Mater. Med. 33 (2017) 27-31.
    Q. Dong, L. Sun, X. Hu, et al., Effects of catalpol on the inflammatory factors of endothelial cells, Med. J. Wuhan Univ. 37 (2016) 884-887.
    H. Hong, S. Fu, C. Ou, et al., Protective effect of catalpol on vascular endothelial cell injured by high glucose, Mod. Tradit. Chin. Med. Mater. Med. World Sci. Technol. 17 (2015) 846-849.
    L. Hu, Y. Sun, J. Hu, Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3K/Akt signaling pathway and modulating expression of Bcl-2 and Bax, Eur. J. Pharmacol. 628 (2010) 155-163.
    Y. Zhang, C. Wang, Q. Yang, et al., Catalpol attenuates oxidative stress and promotes autophagy in TNF-α-exposed HAECs by up-regulating AMPK, RSC Adv. 7 (2017) 52561-52572.
    H. Hu, C. Wang, Y. Jin, et al., Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells, Inflammation 42 (2019) 64-80.
    C. Xu, Y. Zhang, H. Sun, et al., Mechanism of inhibitory effect of catalpol on TNF-α induced HAECs cell damage, Zhongguo Zhong Yao Za Zhi 44 (2019) 796-802.
    Q. Zhu, Y. Sui, H. Zhou, et al., Catalpol reduces the endothelial cells injury induced by high glucose through activating Nrf2 signaling pathway, Acta Acad. Med. Weifang 43 (2021) 453-455.
    T. Zhu, L. Zhang, S. Ling, et al., Scropolioside B inhibits IL-1βand cytokines expression through NF-κB and inflammasome NLRP3 pathways, Mediat. Inflamm. 2014 (2014), 819053.
    H.J. Choi, H.J. Jang, T.W. Chung, et al., Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells, Fitoterapia 86 (2013) 19-28.
    X. Zheng, W. Yang, S. Chen, et al., Neuroprotection of catalpol for experimental acute focal ischemic stroke: Preclinical evidence and possible mechanisms of antioxidation, anti-inflammation, and antiapoptosis, Oxid. Med. Cell. Longev. 2017 (2017) 1-24.
    F. Yan, S. Huang, Research progress on the protective mechanism of catalpol on neurovascular units, J. Liaoning Univ. Tradit. Chin. Med. 25 (2023) 90-94.
    J. Wang, Y. Zhang, M. Zhang, et al., Feasibility of catalpol intranasal administration and its protective effect on acute cerebral ischemia in rats via anti-oxidative and anti-apoptotic mechanisms, Drug Des. Dev. Ther. 16 (2022) 279-296.
    C.S. Melincovici, A.B. Bosca, S. Susman, et al., Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis, Rom. J. Morphol. Embryol. 59 (2018) 455-467.
    M.E. Urena-Guerrero, J.L. Castaneda-Cabral, M.C. Rivera-Cervantes, et al., Neuroprotective and neurorestorative effects of epo and VEGF: Perspectives for new therapeutic approaches to neurological diseases, Curr. Pharm. Des. 26 (2020) 1263-1276.
    S. Hemani, O. Lane, S. Agarwal, et al., Systematic review of erythropoietin (EPO) for neuroprotection in human studies, Neurochem. Res. 46 (2021) 732-739.
    H. Zhu, D. Wan, Y. Luo, et al., Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion, Int. J. Biol. Sci. 6 (2010) 443-453.
    H. Zhu, Catalpol-induced neurovascular protection, angiogenesis, and neurologic restoration after focal cerebral ischemia in rats [dissertation], Chongqing: ChongQing Medical University, 2007.
    Y. Zhang, Z. Du, D. Li, et al., Catalpol modulating the crosstalking between mesenchymal stromal cells and macrophages via paracrine to enhance angiogenesis and osteogenesis, Exp. Cell Res. 418 (2022), 113269.
    C. Liu, K. Bai, G. Yu, Protective effect of catalpol on bEnd.3 cell apoptosis and excessive autophagy induced by fibrous Aβ1-42, Chin. J. Exp. Tradit. Med. Formulae 23 (2017) 108-113.
    L. Zou, K. Liu, H. Zhu, et al., Protective effect of catalpolon destruction of tight junctions of high glucose induced BMECs, Zhongguo Zhong Yao Za Zhi 43 (2018) 4118-4124.
    S. Feng, L. Zou, H. Wang, et al., RhoA/ROCK-2 pathway inhibition and tight junction protein upregulation by catalpol suppresses lipopolysaccaride-induced disruption of blood-brain barrier permeability, Molecules 23 (2018), 2371.
    D.J. Hausenloy, D.M. Yellon, Myocardial ischemia-reperfusion injury: A neglected therapeutic target, J. Clin. Invest. 123 (2013) 92-100.
    D. Li, Y. Bao, Y. Li, et al., Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury, Brain Res. 1115 (2006) 179-185.
    Q. Cai, X. Chen, X. Zhan, et al., Protective effects of catalpol on oligodendrocyte death and myelin breakdown in a rat model of chronic cerebral hypoperfusion, Neurosci. Lett. 497 (2011) 22-26.
    D. Li, Y. Li, Y. Liu, et al., Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury, Toxicon 46 (2005) 845-851.
    Q. Cai, X. Chen, Z. Yao, Protective effect of catalpol on white matter injury due to chronic cerebral ischemia in rats, Acta Acad. Med. Mil. Tert. 32 (2010) 2273-2276.
    Q. Cai, Z. Yao, Catalpol attenuates chronic cerebral hypoperfusion-induced white matter lesion in the rat brain by upregulating p-Akt expression, J. Reg. Anat. Oper. Surg. 22 (2013) 237-240.
    J. Zhu, X. Chen, H. Wang, et al., Catalpol protects mice against renal ischemia/reperfusion injury via suppressing PI3K/Akt-eNOS signaling and inflammation, Int. J. Clin. Exp. Med. 8 (2015) 2038-2044.
    X. Ju, D. Xue, T. Wang, et al., Catalpol promotes the survival and VEGF secretion of bone marrow-derived stem cells and their role in myocardial repair after myocardial infarction in rats, Cardiovasc. Toxicol. 18 (2018) 471-481.
    C. Lin, Y. Lu, X. Yan, et al., Catalpol protects glucose-deprived rat embryonic cardiac cells by inducing mitophagy and modulating estrogen receptor, Biomed. Pharmacother. 89 (2017) 973-982.
    L. Hu, Effect and mechanism of catalpol on hydrogen peroxide induced HUVECs and H9c2 cells apoptosis [master’s thesis], Liaoning: China Medical University, 2010.
    Z. Li, J. Zhao, H. Li, et al., Catalpol protects AC16 cells from hypoxia/reoxygenation injury by regulating the miR-22-3p/DPP4 axis, J. Biochem. Mol. Toxicol. 36 (2022), e23034.
    L. Chen, G. peng, H. Xu, et al., Inventors; Application of catalpol in preparation of drugs for treating heart failure, China patent CN 201010529674.2, 13 April 2011.
    A.A. Oktay, H.K. Akturk, K. Esenboga, et al., Pathophysiology and prevention of heart disease in diabetes mellitus, Curr. Probl. Cardiol. 43 (2018) 68-110.
    D. Mozaffarian, E.J. Benjamin, A.S. Go, et al., Heart disease and stroke statistics-2016 update: A report from the American Heart Association, Circulation 133 (2016) e38-e360.
    K. Huynh, B.C. Bernardo, J.R. McMullen, et al., Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways, Pharmacol. Ther. 142 (2014) 375-415.
    Z.V. Varga, Z. Giricz, L. Liaudet, et al., Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy, Biochim. Biophys. Acta 1852 (2015) 232-242.
    K. Carolo dos Santos, C. Pereira Braga, P. Octavio Barbanera, et al., Cardiac energy metabolism and oxidative stress biomarkers in diabetic rat treated with resveratrol, PLoS One 9 (2014), e102775.
    B. Fei, W. Dai, S. Zhao, Efficacy, safety, and cost of therapy of the traditional Chinese medicine, catalpol, in patients following surgical resection for locally advanced colon cancer, Med. Sci. Monit. 24 (2018) 3184-3192.
    Y. Bai, R. Zhu, Y. Tian, et al., Catalpol in diabetes and its complications: A review of pharmacology, pharmacokinetics, and safety, Molecules 24 (2019), 3302.
    R. Samarakoon, J.M. Overstreet, P.J. Higgins, TGF-β signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities, Cell. Signal. 25 (2013) 264-268.
    Y. Yue, K. Meng, Y. Pu, et al., Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy, Diabetes Res. Clin. Pract. 133 (2017) 124-130.
    G. Zou, W. Zhong, F. Wu, et al., Inhibition of lncRNA Neat1 by catalpol via suppressing transcriptional activity of NF-κB attenuates cardiomyocyte apoptosis, Cell Cycle 18 (2019) 3432-3441.
    American Diabetes Association, 10. Cardiovascular disease and risk management: Standards of medical care in diabetes-2019, Diabetes Care 42 (2019) S103-S123.
    S. Ahmad, Z. Siddiqui, S. Rehman, et al., A glycation angle to look into the diabetic vasculopathy: Cause and cure, Curr. Vasc. Pharmacol. 15 (2017) 352-364.
    C. Lu, H. Xu, K. Liu, et al., Protective effects of habitat iridoid glycosides of Radix Rehmanniae on HUVEC injuried by AGEs, J. Nanjing Univ. Tradit. Chin. Med. 31 (2015) 55-59.
    A. Shu, Q. Du, J. Chen, et al., Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway, Chem. Biol. Interact. 348 (2021), 109625.
    A. Nemmar, S. Beegam, N.E. Zaaba, et al., The salutary effects of catalpol on diesel exhaust particles-induced thrombogenic changes and cardiac oxidative stress, inflammation and apoptosis, Biomedicines 10 (2022), 99.
    L. Deng, Q. Wang, H. Yuan, et al., Effect of catalpol and puerarin freeze-dried powder on coagulability, hemorheology and no in rats with Qi-deficiency and blood-stasis syndrome, Zhongguo Zhong Yao Za Zhi 37 (2012) 1472-1476.
    S. Yang, F. Zhang, R. He, et al., Effect of lyophilized powder of catalpol and puerarin on antithrombosis, Chin. Pharmacol. Bull. 32 (2016) 737-738.
    J. Salazar-Mendiguchia, J. Gonzalez-Costello, J. Roca, et al., Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist, Arch. Cardiol. Mex. 84 (2014) 218-223.
    N. Koleini, B.E. Nickel, A.L. Edel, et al., Oxidized phospholipids in doxorubicin-induced cardiotoxicity, Chem. Biol. Interact. 303 (2019) 35-39.
    X. Wu, Effect of catalpol on doxorubicin-induced cytotoxicity in H9c2 cells, J. Med. Plants Res. 6 (2012) 849-854.
    F. Zhang, The experimental investigation of the ZG compatibility effect to cerebral edema of rat [master’s thesis], Chongqing: Southwest University, 2011.
    S. Wei, Transcriptomics research on hypoxia/reoxygenation injury protection of C-P to astrocytes [dissertation], Chongqing: Southwest University, 2015.
    L. Chen, M. Yang, Z. Wang, et al., Effect of catalpol, berberine, and their combination on expression of Glut4 protein and C-Cb1 associated protein in insulin resistant 3T3-L1 adipocytes, Zhongcaoyao 39 (2008) 1510-1514.
    J. Liu, Effects of CPFPI on the neural function of cerebral ischemia in mices and neural stem cells proliferation in cerebral ischemia in rats [master’s thesis], Chongqing: Southwest University, 2012.
    T. Jiang, A. Zhang, R. Zhao, et al., Protective effect of catalpol in mice injuries induced by rotenone and evaluation of the safety of catalpol, Prog. Mod. Biomed. 8 (2008) 1039-1041.
    W. Dong, J. Xu, L. Chen, Separation and identification of catalpol from Rehmannia and its acute toxicity test, J. Fudan Univ. Nat. Sci. 48 (2009) 409-412.
    H.H. Yuan, Q. Tang, F.Y. Zhang, et al., Safety pharmacological study of lyophilized powder of catalpol and puerarin, Chin. Pharmacol. Bull. 33 (2017) 739-740.
    Z. Chen, S. Ye, R. Zhu, The extraordinary transformation of traditional Chinese medicine: Processing with liquid excipients, Pharm. Biol. 58 (2020) 561-573.
    L. Zhang, T. Zhu, F. Qian, et al., Iridoid glycosides isolated from Scrophularia dentata Royle ex Benth. and their anti-inflammatory activity, Fitoterapia 98 (2014) 84-90.
    T. Zhu, L. Zhang, S. Ling, et al., Anti-inflammatory activity comparison among scropoliosides-catalpol derivatives with 6-O-substituted cinnamyl moieties, Molecules 20 (2015) 19823-19836.
    D.-D. Tang, J. Zhang, J.-R. Wang, et al., Effects of different preparation technologies on concentrations of puerarin and catalpol in plasma and brain of rats after oral administration, Zhongguo Zhong Yao Za Zhi 41 (2016) 940-947.
    G. Chen, W. Xue, J. Zhu, Full genetic analysis for genome-wide association study of Fangji: A powerful approach for effectively dissecting the molecular architecture of personalized traditional Chinese medicine, Acta Pharmacol. Sin. 39 (2018) 906-911.
    A. Zhang, H. Sun, P. Wang, et al., Future perspectives of personalized medicine in traditional Chinese medicine: A systems biology approach, Complementary Ther. Med. 20 (2012) 93-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (206) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return