Volume 14 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Rangrang Fan, Linrui Cai, Hao Liu, Hongxu Chen, Caili Chen, Gang Guo, Jianguo Xu. Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 321-334. doi: 10.1016/j.jpha.2023.09.015
Citation: Rangrang Fan, Linrui Cai, Hao Liu, Hongxu Chen, Caili Chen, Gang Guo, Jianguo Xu. Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 321-334. doi: 10.1016/j.jpha.2023.09.015

Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy

doi: 10.1016/j.jpha.2023.09.015
Funds:

This study was supported by the National Natural Science Foundation of China (Grant Nos.: 82102767 and 82002655), the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University, China (Grant No.: 2020HXFH036), the Knowledge Innovation Program of the Chinese Academy of Sciences, China (Grant No.: JH2022007), the Cultivation Project of Basic Medical College of Xinxiang Medical University, China (Grant No.: JCYXYKY202112), and the Key Project of Science and Technology of Henan Province, China (Grant No.: 222102310260).

  • Received Date: Jun. 16, 2023
  • Accepted Date: Sep. 19, 2023
  • Rev Recd Date: Sep. 18, 2023
  • Publish Date: Sep. 23, 2023
  • Despite decades of laboratory and clinical trials, breast cancer remains the main cause of cancer-related disease burden in women. Considering the metabolism destruction effect of metformin (Met) and cancer cell starvation induced by glucose oxidase (GOx), after their efficient delivery to tumor sites, GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ. Herein, a pH-responsive epigallocatechin gallate (EGCG)-conjugated low-molecular-weight chitosan (LC-EGCG, LE) nanoparticle (Met–GOx/Fe@LE NPs) was constructed. The coordination between iron ions (Fe3+) and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction. Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability. Moreover, this pH-responsive nanoplatform presents controllable drug release behavior. An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug. The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation. This triple-combination therapy approach is promising for efficient and targeted cancer treatment.
  • loading
  • [1]
    Y. Liu, J. Ge, Y. Chen, et al., Combined single-cell and spatial transcriptomics reveal the metabolic evolvement of breast cancer during early dissemination, Adv. Sci. (Weinh.) 10 (2023), e2205395.
    [2]
    H. Zhao, Y. Li, H. Shi, et al., Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress, J. Control. Release 352 (2022) 909-919.
    [3]
    X. Zhang, F. Luo, S. Luo, et al., Transcriptional repression of aerobic glycolysis by OVOL2 in breast cancer, Adv. Sci. (Weinh.) 9 (2022), e2200705.
    [4]
    X. Meng, Z. Lu, Q. Lv, et al., Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy, Acta Biomater. 145 (2022) 222-234.
    [5]
    M. Mascaraque-Checa, M. Gallego-Rentero, J. Nicolas-Morala, et al., Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy, Mol. Metab. 60 (2022), 101496.
    [6]
    J. Wan, S. Xu, J. Li, et al., Facile synthesis of multifunctional pharmaceutical carbon dots for targeted bioimaging and chemotherapy of tumors, Nanoscale 14 (2022) 11359-11368.
    [7]
    D. Tailor, C.C. Going, A. Resendez, et al., Novel Aza-podophyllotoxin derivative induces oxidative phosphorylation and cell death via AMPK activation in triple-negative breast cancer, Br. J. Cancer 124 (2021) 604-615.
    [8]
    W. Feng, W. Shi, Z. Wang, et al., Enhancing tumor therapy of Fe(III)-shikonin supramolecular nanomedicine via triple ferroptosis amplification, ACS Appl. Mater. Interfaces 14 (2022) 37540-37552.
    [9]
    C. Zhu, Q. Ma, L. Gong, et al., Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer, Acta Biomater. 141 (2022) 429-439.
    [10]
    G. Zhou, M. Li, Near-infrared-II plasmonic trienzyme-integrated metal-organic frameworks with high-efficiency enzyme cascades for synergistic trimodal oncotherapy, Adv. Mater. 34 (2022), e2200871.
    [11]
    H. Wen, Y. Fei, R. Cai, et al., Tumor-activatable biomineralized nanotherapeutics for integrative glucose starvation and sensitized metformin therapy, Biomaterials 278 (2021), 121165.
    [12]
    J. Zhang, C. Liang, Z. Wei, et al., TME-triggered MnSiO3@Met@GOx nanosystem for ATP dual-inhibited starvation/chemodynamic synergistic therapy, Biomaterials 287 (2022), 121682.
    [13]
    J. Gao, J. Wen, D. Hu, et al., Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion, Bioact. Mater. 16 (2022) 27-46.
    [14]
    R. Fan, D. Chuan, H. Hou, et al., Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy, Nanoscale 11 (2019) 11285-11304.
    [15]
    M. Mu, X. Liang, D. Chuan, et al., Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy, Carbohydr. Polym. 264 (2021), 118000.
    [16]
    Q. Jin, W. Zhu, J. Zhu, et al., Nanoparticle-mediated delivery of inhaled immunotherapeutics for treating lung metastasis, Adv. Mater. 33 (2021), e2007557.
    [17]
    B. Huang, M. Chen, J. Tian, et al., Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration, Adv. Healthc. Mater. 11 (2022), e2102540.
    [18]
    E. Rosella, N. Jia, D. Mantovani, et al., A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures, J. Mater. Sci. Technol. 63 (2021) 54-61.
    [19]
    O.U. Akakuru, C. Xu, C. Liu, et al., Metal-free organo-theranostic nanosystem with high nitroxide stability and loading for image-guided targeted tumor therapy, ACS Nano 15 (2021) 3079-3097.
    [20]
    B.N. Kumara, R. Shambhu, A. Prabhu, et al., Novel chitosan-graphene quantum dots composite for therapeutic delivery and tracking through enzymatic stimuli response, Carbohydr. Polym. 289 (2022), 119426.
    [21]
    S. Li, Y. Zhang, S.H. Ho, et al., Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles, Nat. Biomed. Eng. 4 (2020) 732-742.
    [22]
    Y. Liang, Z. Li, Y. Huang, et al., Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing, ACS Nano 15 (2021) 7078-7093.
    [23]
    N.K. Verma, A.K. Kar, A. Singh, et al., Control release of adenosine potentiate osteogenic differentiation within a bone integrative EGCG-g-NOCC/collagen composite scaffold toward guided bone regeneration in a critical-sized calvarial defect, Biomacromolecules 22 (2021) 3069-3083.
    [24]
    J. Zhao, A. Blayney, X. Liu, et al., EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction, Nat. Commun. 12 (2021), 986.
    [25]
    Z. Zhou, K. Li, L. Shi, et al., Self-assembled integrative nutrient carrier platform containing green tea catechin for short bowel syndrome treatment, Adv. Healthc. Mater. 12 (2023), e2201933.
    [26]
    B. Zhang, R. Yao, C. Hu, et al., Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release, Biomaterials 269 (2021), 120418.
    [27]
    C. Cieuta-Walti, A. Cuenca-Royo, K. Langohr, et al., Safety and preliminary efficacy on cognitive performance and adaptive functionality of epigallocatechin gallate (EGCG) in children with Down syndrome. A randomized phase Ib clinical trial (PERSEUS study), Genet. Med. 24 (2022) 2004-2013.
    [28]
    L. Bu, C. Bi, Z. Shi, et al., Significant enhancement on ferrous/persulfate oxidation with epigallocatechin-3-gallate:Simultaneous chelating and reducing, Chem. Eng. J. 321 (2017) 642-650.
    [29]
    H. Shi, R. Wang, H. Cao, et al., A metal-polyphenol-based oxygen economizer and Fenton reaction amplifier for self-enhanced synergistic photothermal/chemodynamic/chemotherapy, Adv. Healthc. Mater. 12 (2023), e2300054.
    [30]
    F. Lei, X. Wang, C. Liang, et al., Preparation and functional evaluation of chitosan-EGCG conjugates, J. Appl. Polym. Sci. 131 (2014), 39732.
    [31]
    J. Moellmann, S. Grimme, DFT-D3 study of some molecular crystals, J. Phys. Chem. C 118 (2014) 7615-7621.
    [32]
    R. Fan, C. Chen, J. Hu, et al., Multifunctional gold nanorods in low-temperature photothermal interactions for combined tumor starvation and RNA interference therapy, Acta Biomater. 159 (2023) 324-337.
    [33]
    L. Zhang, S. Wan, C. Li, et al., An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion, Nano Lett. 18 (2018) 7609-7618.
    [34]
    M. Mu, H. Chen, R. Fan, et al., A tumor-specific ferric-coordinated epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy, J. Adv. Res. 34 (2021) 29-41.
    [35]
    M. Wu, Q. Wang, S. Chen, et al., Metabolic intervention liposome for targeting glutamine-addiction of breast cancer, J. Control. Release 350 (2022) 1-10.
    [36]
    Z. Mo, X. Pan, X. Pan, et al., MOF(Fe)-derived composites as a unique nanoplatform for chemo-photodynamic tumor therapy, J. Mater. Chem. B 10 (2022) 8760-8770.
    [37]
    Q. Zheng, Y. Fang, L. Zeng, et al., Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization, J. Mater. Chem. B 7 (2019) 6759-6769.
    [38]
    R. Fan, C. Chen, H. Hou, et al., Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy, Adv. Funct. Mater. 31 (2021), 2009733.
    [39]
    M. Miao, L. Mu, S. Cao, et al., Dual-functional CDs@ZIF-8/chitosan luminescent film sensors for simultaneous detection and adsorption of tetracycline, Carbohydr. Polym. 291 (2022), 119587.
    [40]
    W. Ni, J. Wu, Y. Feng, et al., Metformin reprograms tumor microenvironment and boosts chemoimmunotherapy in colorectal cancer, Biomater. Sci. 10 (2022) 5596-5607.
    [41]
    W. Zhou, X. Tang, J. Huang, et al., Dual-imaging magnetic nanocatalysis based on Fenton-like reaction for tumor therapy, J. Mater. Chem. B 10 (2022) 3462-3473.
    [42]
    Y. Zhang, S. Jiang, J. Lin, et al., Antineoplastic enzyme as drug carrier with activatable catalytic activity for efficient combined therapy, Angew. Chem. Int. Ed. 61 (2022), e202208583.
    [43]
    N. Hashemifard, A. Mohsenifar, B. Ranjbar, et al., Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate, Anal. Chim. Acta 675 (2010) 181-184.
    [44]
    X. Li, Q. Zhou, A.A.W M.M. Japir, et al., Protein-delivering nano complexes with Fenton reaction-triggered cargo release to boost cancer immunotherapy, ACS Nano 16 (2022) 14982-14999.
    [45]
    T. Lu, Q. Chen, Independent gradient model based on Hirshfeld partition:A new method for visual study of interactions in chemical systems, J. Comput. Chem. 43 (2022) 539-555.
    [46]
    T. Lu, F. Chen, Multiwfn:A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592.
    [47]
    W. Humphrey, A. Dalke, K. Schulten, VMD:Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38.
    [48]
    L. Tan, J. Peng, Q. Zhao, et al., A novel MPEG-PDLLA-PLL copolymer for docetaxel delivery in breast cancer therapy, Theranostics 7 (2017) 2652-2672.
    [49]
    E. Kirbas Cilingir, E.S. Seven, Y. Zhou, et al., Metformin derived carbon dots:Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers, J. Colloid Interface Sci. 592 (2021) 485-497.
    [50]
    Z. Fan, T. Ren, Y. Wang, et al., Aβ-responsive metformin-based supramolecular synergistic nanodrugs for Alzheimer's disease via enhancing microglial Aβ clearance, Biomaterials 283 (2022), 121452.
    [51]
    J. Ren, L. Zhang, J. Zhang, et al., Light-activated oxygen self-supplied starving therapy in near-infrared (NIR) window and adjuvant hyperthermia-induced tumor ablation with an augmented sensitivity, Biomaterials 234 (2020), 119771.
    [52]
    X. Meng, L. Chen, R. Lv, et al., A metal-phenolic network-based multifunctional nanocomposite with pH-responsive ROS generation and drug release for synergistic chemodynamic/photothermal/chemo-therapy, J. Mater. Chem. B 8 (2020) 2177-2188.
    [53]
    M. Qian, Z. Cheng, G. Luo, et al., Molybdenum diphosphide nanorods with laser-potentiated peroxidase catalytic/mild-photothermal therapy of oral cancer, Adv. Sci. (Weinh.) 9 (2022), 2101527.
    [54]
    Z. Liu, S. Liu, B. Liu, et al., Fe(III)-naphthazarin metal-phenolic networks for glutathione-depleting enhanced ferroptosis-apoptosis combined cancer therapy, Small 19 (2023), e2207825.
    [55]
    D. Chuan, H. Hou, Y. Wang, et al., Multifunctional metal-polyphenol nanocomposite for melanoma targeted photo/chemodynamic synergistic therapy, J. Mater. Sci. Technol. 152 (2023) 159-168.
    [56]
    R. Jaquish, A.K. Reilly, B.P. Lawson, et al., Immobilized glucose oxidase on magnetic silica and alumina:Beyond magnetic separation, Int. J. Biol. Macromol. 120 (2018) 896-905.
    [57]
    Y. Zeng, H. Zhou, J. Ding, et al., Cell membrane inspired nano-shell enabling long-acting glucose oxidase for melanoma starvation therapy via microneedles-based percutaneous delivery, Theranostics 11 (2021) 8270-8282.
    [58]
    N. Bertrand, J. Wu, X. Xu, et al., Cancer nanotechnology:The impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv. Rev. 66 (2014) 2-25.
    [59]
    X. Ding, M. Liu, Q. Cheng, et al., Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy, Biomaterials 281 (2022), 121369.
    [60]
    L. Dai, M. Yao, Z. Fu, et al., Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy, Nat. Commun. 13 (2022), 2688.
    [61]
    X. Xu, Y. Ran, C. Huang, et al., Glucose and H2O2 dual-responsive nano complex grafted with insulin prodrug for blood glucose regulation, Biomacromolecules 23 (2022) 1765-1776.
    [62]
    M. Mascaraque, P. Delgado-Wicke, C. Nuevo-Tapioles, et al., Metformin as an adjuvant to photodynamic therapy in resistant basal cell carcinoma cells, Cancers 12 (2020), 668.
    [63]
    Y. Jiang, Y. Tan, K. Xiao, et al., pH-regulating nanoplatform for the "double channel chase" of tumor cells by the synergistic cascade between chlorine treatment and methionine-depletion starvation therapy, ACS Appl. Mater. Interfaces 13 (2021) 54690-54705.
    [64]
    Q. Mu, G. Lin, Z.R. Stephen, et al., In vivo serum enabled production of ultrafine nanotherapeutics for cancer treatment, Mater. Today (Kidlington) 38 (2020) 10-23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (265) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return