Citation: | Lan Chen, Yuan Zhang, Yi-Xin Zhang, Wei-Lai Wang, De-Mei Sun, Peng-Yun Li, Xue-Song Feng, Yue Tan. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100899. doi: 10.1016/j.jpha.2023.11.006 |
[1] |
E. Cardoso, M. Guidi, B. Blanchet, et al., Therapeutic drug monitoring of targeted anticancer protein kinase inhibitors in routine clinical use: A critical review, Ther. Drug Monit. 42 (2020) 33-44.
|
[2] |
N. Verougstraete, V. Stove, A.G. Verstraete, et al., Quantification of eight hematological tyrosine kinase inhibitors in both plasma and whole blood by a validated LC-MS/MS method, Talanta 226 (2021), 122140.
|
[3] |
H.H. Huynh, C. Pressiat, H. Sauvageon, et al., Development and validation of a simultaneous quantification method of 14 tyrosine kinase inhibitors in human plasma using LC-MS/MS, Ther. Drug Monit. 39 (2017) 43-54.
|
[4] |
S. Farag, R.B. Verheijen, J. Martijn Kerst, et al., Imatinib pharmacokinetics in a large observational cohort of gastrointestinal stromal tumour patients, Clin. Pharmacokinet. 56 (2017) 287-292.
|
[5] |
R. Xu, Q. Lin, X. Qiu, et al., UPLC-MS/MS method for the simultaneous determination of imatinib, voriconazole and their metabolites concentrations in rat plasma, J. Pharm. Biomed. Anal. 166 (2019) 6-12.
|
[6] |
Y. Xia, S. Chen, M. Luo, et al., Correlations between imatinib plasma trough concentration and adverse reactions in Chinese patients with gastrointestinal stromal tumors, Cancer 126 (2020) 2054-2061.
|
[7] |
J.C. Yang, N. Reguart, J. Barinoff, et al., Diarrhea associated with afatinib: An oral ErbB family blocker, Expert Rev. Anticancer Ther. 13 (2013) 729-736.
|
[8] |
X. Lu, S. Liu, X. Yang, et al., Determination of tyrosine kinase inhibitor afatinib in rat plasma using LC-MS/MS and its application to in vivo pharmacokinetic studies of afatinib liposomes, J. Pharm. Biomed. Anal. 164 (2019) 181-186.
|
[9] |
D.N. Suresha, T. Pramila, T. Tamizh Mani, Method development and validation of Imatinib Mesylate-Review, Int. J. Pharm. Pharm. Anal. 1 (2016) 1-11.
|
[10] |
N. Li, T. Zhang, G. Chen, et al., Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples, Trends Analyt. Chem. 142 (2021), 116318.
|
[11] |
H. Li, D. Zhang, X. Cheng, et al., A validated 2D-LC-UV method for simultaneous determination of imatinib and N-desmethylimatinib in plasma and its clinical application for therapeutic drug monitoring with GIST patients, Curr. Pharm. Anal. 18 (2022) 122-131.
|
[12] |
M. Zhang, X. Liu, Z. Chen, et al., Method development and validation for simultaneous determination of six tyrosine kinase inhibitors and two active metabolites in human plasma/serum using UPLC-MS/MS for therapeutic drug monitoring, J. Pharm. Biomed. Anal. 211 (2022), 114562.
|
[13] |
L. Adlnasab, M. Ezoddin, R.A. Shojaei, et al., Ultrasonic-assisted dispersive micro solid-phase extraction based on melamine-phytate supermolecular aggregate as a novel bio-inspired magnetic sorbent for preconcentration of anticancer drugs in biological samples prior to HPLC-UV analysis, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1095 (2018) 226-234.
|
[14] |
P. Khodayari, N. Jalilian, H. Ebrahimzadeh, et al., Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis, J. Chromatogr. A 1655 (2021), 462484.
|
[15] |
N. Rahimi Kakavandi, T. Asadi, B. Jannat, et al., Method development for determination of imatinib and its major metabolite, N-desmethyl imatinib, in biological and environmental samples by SA-SHS-LPME and HPLC, Biomed. Chromatogr. 35 (2021), e5088.
|
[16] |
A. Kazemi, H. Ahmad Panahi, R. Safaeijavan, Thermosensitive molecularly imprinted poly(1-vinyl-2-pyrrolidone/methyl methacrylate/N-vinylcaprolactam) for selective extraction of imatinib mesylate in human biological fluid, J. Sep. Sci. 43 (2020) 614-621.
|
[17] |
S. Hooshmand, Z. Es’haghi, Hydrophilic modified magnetic multi-walled carbon nanotube for dispersive solid/liquid phase microextraction of sunitinib in human samples, Anal. Biochem. 542 (2018) 76-83.
|
[18] |
A.T.M. da Silva, C.D.P.B. Bessa, W. de S. Borges, et al., Bioanalytical methods for determining ecstasy components in biological matrices: A review, Trends Analyt. Chem. 108 (2018) 323-346.
|
[19] |
C.C.L.M. Boons, L. Timmers, J.J.W.M. Janssen, et al., Feasibility of and patients’ perspective on nilotinib dried blood spot self-sampling, Eur. J. Clin. Pharmacol. 75 (2019) 825-829.
|
[20] |
J. Lee, S.Y. Jung, M.Y. Choi, et al., Development of a dried blood spot sampling method towards therapeutic monitoring of radotinib in the treatment of chronic myeloid leukaemia, J. Clin. Pharm. Ther. 45 (2020) 1006-1013.
|
[21] |
T. Tuzimski, A. Petruczynik, Review of chromatographic methods coupled with modern detection techniques applied in the therapeutic drugs monitoring (TDM), Molecules 25 (2020), 4026.
|
[22] |
Y. Mukai, T. Yoshida, T. Kondo, et al., Development and validation of a simple method for simultaneously measuring the concentrations of BCR-ABL and bruton tyrosine kinase inhibitors in dried blood spot (DBS): A pilot study to obtain candidate conversion equations for predicting plasma concentration based on DBS concentration, Ther. Drug Monit. 44 (2022) 762-770.
|
[23] |
R. Longuespee, D. Theile, M. Fresnais, et al., Approaching sites of action of drugs in clinical pharmacology: New analytical options and their challenges, Br. J. Clin. Pharmacol. 87 (2021) 858-874.
|
[24] |
J. Portnow, B. Badie, S. Markel, et al., A neuropharmacokinetic assessment of bafetinib, a second generation dual BCR-Abl/Lyn tyrosine kinase inhibitor, in patients with recurrent high-grade gliomas, Eur. J. Cancer 49 (2013) 1634-1640.
|
[25] |
M. Tamminga, S. de Wit, E. Schuuring, et al., Circulating tumor cells in lung cancer are prognostic and predictive for worse tumor response in both targeted-and chemotherapy, Transl. Lung Cancer Res. 8 (2019) 854-861.
|
[26] |
Z. Ye, L. Wu, X. Zhang, et al., Quantification of sorafenib, lenvatinib, and apatinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS, J. Pharm. Biomed. Anal. 202 (2021), 114161.
|
[27] |
M. Allard, N. Khoudour, B. Rousseau, et al., Simultaneous analysis of regorafenib and sorafenib and three of their metabolites in human plasma using LC-MS/MS, J. Pharm. Biomed. Anal. 142 (2017) 42-48.
|
[28] |
A. Chokshi, A. Gajjar, P. Bhanushali, et al., Quantification of antileukemic drug Dasatinib in human plasma: Application of a sensitive liquid chromatographic method, J. Chem. Metrol. 15 (2021) 152-162.
|
[29] |
K. Kleigrewe, A.C. Söhnel, H.U. Humpf, A new high-performance liquid chromatography-tandem mass spectrometry method based on dispersive solid phase extraction for the determination of the mycotoxin fusarin C in corn ears and processed corn samples, J. Agric. Food Chem. 59 (2011) 10470-10476.
|
[30] |
M. Sakhi, A. Khan, I. Khan, et al., A new sensitive HPLC/UV method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma: Application to in-vitro and in-vivo evaluation of paclitaxel polymeric nanoformulations, Trop. J. Pharm. Res. 20 (2021) 1949-1959.
|
[31] |
Z. Wang, L. Lian, Y. Dong, et al., Determination of anlotinib, a tyrosine kinase inhibitor, in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study, J. Anal. Methods Chem. 2019 (2019), 5016757.
|
[32] |
R.R. Yaragal, D. Kumar, S. Mutnuri, Development of UPLC-MS/MS method for analyzing phorate: Application to wastewater treatment, J. Iran. Chem. Soc. 17 (2020) 2923-2931.
|
[33] |
W. Zhuang, H.-B. Qiu, X.-M. Chen, et al., Simultaneous quantification of imatinib and its main metabolite N-demethyl-imatinib in human plasma by liquid chromatography-tandem mass spectrometry and its application to therapeutic drug monitoring in patients with gastrointestinal stromal tumor, Biomed. Chromatogr. 31 (2017), e4022.
|
[34] |
J. Zeng, H.L. Cai, Z.P. Jiang, et al., A validated UPLC-MS/MS method for simultaneous determination of imatinib, dasatinib and nilotinib in human plasma, J. Pharm. Anal. 7 (2017) 374-380.
|
[35] |
M. Gurjar, P. Mehta, J. Sharma, et al., An HPLC method for simultaneous quantification of sunitinib and its active metabolite, SU12662, using hydrophilic interaction chromatography principle, Bioanalysis 12 (2020) 75-85.
|
[36] |
T. Zhao, L. Wang, D.D.Y. Chen, Quantification of imatinib and related compounds using capillary electrophoresis-tandem mass spectrometry with field-amplified sample stacking, Electrophoresis 41 (2020) 1843-1850.
|
[37] |
E. Ezzeldin, M. Iqbal, R.N. Herqash, et al., Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1136 (2020), 121851.
|
[38] |
J. Jolibois, A. Schmitt, B. Royer, A simple and fast LC-MS/MS method for the routine measurement of cabozantinib, olaparib, palbociclib, pazopanib, sorafenib, sunitinib and its main active metabolite in human plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1132 (2019), 121844.
|
[39] |
M. Ni, J. Zhou, H. Li, et al., Simultaneous determination of six tyrosine kinase inhibitors in human plasma using HPLC-Q-Orbitrap mass spectrometry, Bioanalysis 9 (2017) 925-935.
|
[40] |
Z. Xu, C. Zhang, X. Yu, et al., Microwave-assisted solid-phase synthesis of nitrogen-doping carbon dot with good solvent compatibility and its sensing of sunitinib, Anal. Bioanal. Chem. 413 (2021) 6435-6447.
|
[41] |
L. Zhou, S. Wang, M. Chen, et al., Simultaneous and rapid determination of 12 tyrosine kinase inhibitors by LC-MS/MS in human plasma: Application to therapeutic drug monitoring in patients with non-small cell lung cancer, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1175 (2021), 122752.
|
[42] |
O.S. Ahmed, Y. Ladner, J. Xia, et al., A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma, Talanta 208 (2020), 120391.
|
[43] |
O.S. Ahmed, Y. Ladner, J. Montels, et al., Coupling of salting-out assisted liquid-liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis, J. Chromatogr. A 1579 (2018) 121-128.
|
[44] |
A.Z. Moghaddam, A.E. Bameri, M.R. Ganjali, et al., A low-voltage electro-membrane extraction for quantification of imatinib and sunitinib in biological fluids, Bioanalysis 13 (2021) 1401-1413.
|
[45] |
H. Liu, M. Zhang, X. Wang, et al., Extraction and determination of polybrominated diphenyl ethers in water and urine samples using solidified floating organic drop microextraction along with high performance liquid chromatography, Microchim. Acta 176 (2012) 303-309.
|
[46] |
M. Cruz-Vera, R. Lucena, S. Cardenas, et al., One-step in-syringe ionic liquid-based dispersive liquid-liquid microextraction, J. Chromatogr. A 1216 (2009) 6459-6465.
|
[47] |
M. Ghazaghi, H.Z. Mousavi, H. Shirkhanloo, et al., Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid, Anal. Chim. Acta 951 (2017) 78-88.
|
[48] |
C. Merienne, M. Rousset, D. Ducint, et al., High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS, J. Pharm. Biomed. Anal. 150 (2018) 112-120.
|
[49] |
N.Z. Alzoman, H.M. Maher, S.M. Shehata, et al., UPLC-MS/MS study of the effect of dandelion root extract on the plasma levels of the selected irreversible tyrosine kinase inhibitors dasatinib, imatinib and nilotinib in rats: Potential risk of pharmacokinetic interactions, Biomed. Chromatogr. 33 (2019), e4674.
|
[50] |
A. Wojnicz, B. Colom-Fernandez, J.L. Steegmann, et al., Simultaneous determination of imatinib, dasatinib, and nilotinib by liquid chromatography-tandem mass spectrometry and its application to therapeutic drug monitoring, Ther. Drug Monit. 39 (2017) 252-262.
|
[51] |
I. Vrobel, H. Janeckova, E. Faber, et al., Ultrafast online SPE-MS/MS method for quantification of 3 tyrosine kinase inhibitors in human plasma, Ther. Drug Monit. 38 (2016) 516-524.
|
[52] |
H.M. Maher, N.Z. Alzoman, S.M. Shehata, et al., Comparative pharmacokinetic profiles of selected irreversible tyrosine kinase inhibitors, neratinib and pelitinib, with apigenin in rat plasma by UPLC-MS/MS, J. Pharm. Biomed. Anal. 137 (2017) 258-267.
|
[53] |
J. Li, L. Zhao, C. Wei, et al., Preparation of restricted access media molecularly imprinted polymers for efficient separation and enrichment ofloxacin in bovine serum samples, J. Sep. Sci. 42 (2019) 2491-2499.
|
[54] |
T. Khezeli, A. Daneshfar, Development of dispersive micro-solid phase extraction based on micro and nano sorbents, Trends Analyt. Chem. 89 (2017) 99-118.
|
[55] |
D. Koller, V. Vaitsekhovich, C. Mba, et al., Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring, Talanta 208 (2020), 120450.
|
[56] |
N. Li, Q. Zhu, Y. Yang, et al., A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner, Talanta 132 (2015) 713-718.
|
[57] |
C. Qi, Q. Cai, P. Zhao, et al., The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: Application to a pharmacokinetic study, J. Chromatogr. A 1449 (2016) 30-38.
|
[58] |
L. Chen, M. Zhang, F. Fu, et al., Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine, J. Chromatogr. A 1567 (2018) 136-146.
|
[59] |
L. Chen, Y. He, Z. Lei, et al., Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample, Talanta 181 (2018) 296-304.
|
[60] |
H. Jiang, N. Li, L. Cui, et al., Recent application of magnetic solid phase extraction for food safety analysis, Trends Analyt. Chem. 120 (2019), 115632.
|
[61] |
G. Li, M. Zhao, L. Zhao, Development and validation of an UPLC-MS/MS method for simultaneous determination of fifteen targeted anti-cancer drugs in human plasma and its application in therapeutic drug monitoring, J. Pharm. Biomed. Anal. 212 (2022), 114517.
|
[62] |
M. Arvand, A.N. Masouleh, Magnetic solid-phase extraction of imatinib and doxorubicin as cytostatic drugs by Fe3O4/graphene oxide nanocomposite, J. Iran. Chem. Soc. 14 (2017) 1673-1682.
|
[63] |
H. Sahebi, S.M. Pourmortazavi, H. Zandavar, et al., Chitosan grafted onto Fe3O4@poly(N-vinylcaprolactam) as a new sorbent for detecting Imatinib mesylate in biosamples using UPLC-MS/MS, Analyst 144 (2019) 7336-7350.
|
[64] |
H. Sahebi, E. Konoz, A. Ezabadi, et al., Sensitive determination of imatinib mesylate in human plasma using DABCO-based ionic liquid-modified magnetic nanoparticles, Chromatographia 83 (2020) 1009-1019.
|
[65] |
M. Pirdadeh-Beiranvand, A. Afkhami, T. Madrakian, Magnetic molecularly imprinted electrospun nanofibers for selective extraction of nilotinib from human serum, Anal. Bioanal. Chem. 412 (2020) 1629-1637.
|
[66] |
D. Liu, J. Peng, L. Chen, et al., Solid phase extraction-based magnetic carbon nitride/metal organic framework composite with high performance liquid chromatography for the determination of tyrosine kinase inhibitors in urine samples, Anal. Methods 12 (2020) 4798-4805.
|
[67] |
E.A. Souza Silva, S. Risticevic, J. Pawliszyn, Recent trends in SPME concerning sorbent materials, configurations and in vivo applications, Trends Analyt. Chem. 43 (2013) 24-36.
|
[68] |
E.A. Souza-Silva, N. Reyes-Garces, G.A. Gomez-Rios, et al., A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications, Trends Analyt. Chem. 71 (2015) 249-264.
|
[69] |
B. Bojko, E. Cudjoe, G.A. Gomez-Rios, et al., SPME: Quo vadis? Anal. Chim. Acta 750 (2012) 132-151.
|
[70] |
G.A. Gomez-Rios, N. Reyes-Garces, B. Bojko, et al., Biocompatible solid-phase microextraction nanoelectrospray ionization: An unexploited tool in bioanalysis, Anal. Chem. 88 (2016) 1259-1265.
|
[71] |
A. Miodek, N. Mejri-Omrani, R. Khoder, et al., Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor, Talanta 154 (2016) 446-454.
|
[72] |
M. Zhou, Y. Wang, Y. Zhai, et al., Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chemistry 15 (2009) 6116-6120.
|
[73] |
B. Hatamluyi, Z. Es’haghi, A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples, J. Electroanal. Chem. 801 (2017) 439-449.
|
[74] |
A. Jerath, Q.J. Yang, K.S. Pang, et al., Tranexamic acid dosing for cardiac surgical patients with chronic renal dysfunction: A new dosing regimen, Anesth. Analg. 127 (2018) 1323-1332.
|
[75] |
Y. Cui, S. Liu, K. Wei, et al., Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents, Microchim. Acta 182 (2015) 1337-1344.
|
[76] |
M. Ghazaghi, H.Z. Mousavi, H. Shirkhanloo, et al., Ultrasound assisted dispersive micro solid-phase extraction of four tyrosine kinase inhibitors from serum and cerebrospinal fluid by using magnetic nanoparticles coated with nickel-doped silica as an adsorbent, Microchim. Acta 183 (2016) 2779-2789.
|
[77] |
W. Xiong, J.H. Kang, Y. Jung, Preparation of nitrogen-doped porous carbon from melamine-formaldehyde resins crosslinked by phytic acid, Int. J. Electrochem. Sci. 13 (2018) 852-862.
|
[78] |
M. Ghorbani, M. Aghamohammadhassan, M. Chamsaz, et al., Dispersive solid phase microextraction, Trends Analyt. Chem. 118 (2019) 793-809.
|
[79] |
S. Jo, H. Jeong, S.R. Bae, et al., Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids, Microchem. J. 88 (2008) 1-6.
|
[80] |
Y. Liu, H. Liu, Z. Xia, et al., Simultaneous and rapid determination of six tyrosine kinase inhibitors in patients with non-small cell lung cancer using HPLC-MS/MS, Int. J. Anal. Chem. 2021 (2021), 5524361.
|
[81] |
Q. Zhang, Z. Li, K. Xu, et al., Intracellular concentration and transporters in imatinib resistance of gastrointestinal stromal tumor, Scand. J. Gastroenterol. 54 (2019) 220-226.
|
[82] |
T. Hirasawa, M. Kikuchi, K. Shigeta, et al., High-throughput liquid chromatography/electrospray ionization-tandem mass spectrometry method using in-source collision-induced dissociation for simultaneous quantification of imatinib, dasatinib, bosutinib, nilotinib, and ibrutinib in human plasma, Biomed. Chromatogr. 35 (2021), e5124.
|
[83] |
H.M. Maher, N.Z. Alzoman, S.M. Shehata, Ultra-performance LC-MS/MS study of the pharmacokinetic interaction of imatinib with selected vitamin preparations in rats, Bioanalysis 10 (2018) 1099-1113.
|
[84] |
J. Wen, S. Bao, Y. Cai, et al., A reliable and stable method for determination of brigatinib in rat plasma by UPLC-MS/MS: Application to a pharmacokinetic study, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1068-1069 (2017) 84-89.
|
[85] |
H. Son, W. Kang, Quantitative determination of bilobetin in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study, Biomed. Chromatogr. 34 (2020), e4784.
|
[86] |
B. Pasquini, S. Orlandini, S. Furlanetto, et al., Quality by Design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography-tandem mass spectrometry method for the determination of nintedanib and its impurities, J. Chromatogr. A 1611 (2020), 460615.
|
[87] |
P.J. Rudzki, E. Gniazdowska, K. Bus-Kwasnik, Quantitative evaluation of the matrix effect in bioanalytical methods based on LC-MS: A comparison of two approaches, J. Pharm. Biomed. Anal. 155 (2018) 314-319.
|
[88] |
G.D.M. Veerman, P. de Bruijn, A.C. Dingemans, et al., To quantify the small-molecule kinase inhibitors ceritinib, dacomitinib, lorlatinib, and nintedanib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry, J. Pharm. Biomed. Anal. 193 (2021), 113733.
|
[89] |
V. Iacuzzi, M. Zanchetta, S. Gagno, et al., A LC-MS/MS method for therapeutic drug monitoring of sorafenib, regorafenib and their active metabolites in patients with hepatocellular carcinoma, J. Pharm. Biomed. Anal. 187 (2020), 113358.
|
[90] |
H.M. Maher, N.Z. Alzoman, S.M. Shehata, et al., Validated UPLC-MS/MS method for the quantification of dasatinib in plasma: Application to pharmacokinetic interaction studies with nutraceuticals in Wistar rats, PLoS One 13 (2018), e0199208.
|
[91] |
D. Dutta, S. Das, J.A. Seijas, et al., Validated stability-indicating HPTLC method for nintedanib & characterization of degradants by LC-MSn, The 23rd International Electronic Conference on Synthetic Organic Chemistry, November 15-December 15, 2019, https://doi.org/10.3390/ecsoc-23-06502.
|
[92] |
Y. He, L. Zhou, S. Gao, et al., Development and validation of a sensitive LC-MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies, J. Pharm. Biomed. Anal. 148 (2018) 65-72.
|
[93] |
Y. Mukai, T. Yoshida, T. Kondo, et al., Novel high-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification of BCR-ABL and Bruton’s tyrosine kinase inhibitors and their three active metabolites in human plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1137 (2020), 121928.
|
[94] |
A.S. Abdelhameed, M.W. Attwa, N.S. Al-Shaklia, et al., A highly sensitive LC-MS/MS method to determine novel Bruton’s tyrosine kinase inhibitor spebrutinib: Application to metabolic stability evaluation, R. Soc. Open Sci. 6 (2019), 190434.
|
[95] |
P. Johnsirani, A.A. Wani, P.V. Bharatam, et al., LC-ESI-QTOF-MS analysis utilizing gas-phase fragmentation reactions subjected to ESI-IS-CID and ESI-CID-MS/MS conditions to study the degradation behaviour of sorafenib tosylate: NMR and in vitro cytotoxicity and apoptosis detection studies of hydrolytic degradation products, J. Pharm. Biomed. Anal. 177 (2020), 112881.
|
[96] |
J. Roosendaal, S.L. Groenland, H. Rosing, et al., Determination of the absolute bioavailability of oral imatinib using a stable isotopically labeled intravenous imatinib-d8 microdose, Eur. J. Clin. Pharmacol. 76 (2020) 1075-1082.
|
[97] |
E. Pirro, S. De Francia, F. De Martino, et al., A new HPLC-UV validated method for therapeutic drug monitoring of tyrosine kinase inhibitors in leukemic patients, J. Chromatogr. Sci. 49 (2011) 753-757.
|
[98] |
G.P. Kocan, M. Huang, F. Li, et al., A sensitive LC-MS-MS assay for the determination of lapatinib in human plasma in subjects with end-stage renal disease receiving hemodialysis, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1097-1098 (2018) 74-82.
|
[99] |
F. Hasin, M.T. Islam, M.F. Ahmad, et al., Validation of assay method for the estimation of imatinib mesylate in tablet dosage form by HPLC, Eur. J. Biomed. Pharm. Sci. 4 (2017) 74-81.
|
[100] |
O. Coban, Z. Degim, Development and validation of highly selective method for the determination of imatinib mesylate and dexketoprofen trometamol combination in three different media, Braz. J. Pharm. Sci. 56 (2020), e18583.
|
[101] |
P. Shah, N. Shah, R. Shah, Method development and validation of a stability indicating RP-HPLC method for assay determination of imatinib in imatinib mesylate tablets dosage form, Int. J. Curr. Pharm. Rev. Res. 6 (2015) 4453-4468.
|
[102] |
H.A. Alhazmi, D.A. Moraya, E. Alahdal, et al., Ultrafast monolithic HPLC method for simultaneous quantification of the anticancer agents, imatinib and sorafenib: Application to tablet dosage forms, Trop. J. Pharm Res 17 (2018) 1127-1134.
|
[103] |
A.C. Alaejos, S.J. Cabrera, B.C. Rodriguez, et al., Validation and comparison of two analytical methods for imatinib therapeutic drug monitoring, Chromatographia 84 (2021) 589-596.
|
[104] |
A.K. Kuna, G. Seru, G.V. Radha, Analytical method development and validation for the estimation of Imatinib mesylate and its dimer impurity in pharmaceutical formulation by reverse-phase high-performance liquid chromatography, Asian J. Pharm. Clin. Res. 11 (2018) 136-139.
|
[105] |
Y. Zhou, J. Lai, F. Qiu, et al., Development and validation of an HPLC-UV method for routine trough plasma concentration monitoring of imatinib in Chinese patients with gastrointestinal stromal tumor, J. Chin. Pharm. Sci. 29 (2020) 637-648.
|
[106] |
N.S. Lakka, C. Kuppan, K.S. Srinivas, et al., Separation and characterization of new forced degradation products of dasatinib in tablet dosage formulation using LC-MS and stability-indicating HPLC methods, Chromatographia 83 (2020) 947-962.
|
[107] |
B. Mohan, D. Ravi Kumar, R.S.K. Sharma, et al., Validated RP-HPLC method for estimation of related impurities in dasatinib, Eurasian J. Analyt. Chem. 15 (2020) 51-58.
|
[108] |
D.M. Patel, D. Patel, A. Patel, et al., Method development and validation for simultaneous estimation of benidipine hydrochloride and metoprolol succinate in tablet, J. Drug Delivery Ther. 9 (2019) 28-33.
|
[109] |
P.R. Sankar, S. Anusha, Development and validation of RP-HPLC method for the determination of dasatinib in the tablet dosage form, Int. J. Pharm. Sci. Res. 10 (2019) 4531-4537.
|
[110] |
C. Sojitra, A. Tehare, C. Dholakia, et al., Development of chromatographic method for determination of impurities in solid dispersion of dasatinib, Braz. J. Anal. Chem. 5 (2018) 19-29.
|
[111] |
P. Ravi Sankar, A. Viswanath, M.M. Eswarudu, et al., Development and validation of RP-HPLC method for the determination of sorafenib in pharmaceutical dosage form, Int. J. Pharm. Sci. Rev. Res. 69 (2021) 15-23.
|
[112] |
S.K. Shukla, H. Kadry, J.A. Bhatt, et al., Statistical optimization and validation of a novel ultra-performance liquid chromatography method for estimation of nintedanib in rat and human plasma, Bioanalysis 12 (2020) 159-174.
|
[113] |
R. Kumar, V.K. Munipalli, R.M. Singh, et al., Validated RP-HPLC method for determination and quantification of nintedanib in pharmaceutical formulation, J. Adv. Pharmacol. 1 (2020) 38-47.
|
[114] |
R. Lalitha, K. Gandla, P.V.T. Shruthi, et al., Method development and validation of sunitinib in bulk and pharmaceutical dosage form by RP-HPLC method, Int. J. Pharmacogn. Chem. 1 (2020) 70-73.
|
[115] |
B. Jayagopal, S. Murugesh, QbD-mediated RP-UPLC method development invoking an FMEA-based risk assessment to estimate nintedanib degradation products and their pathways, Arab. J. Chem. 13 (2020) 7087-7103.
|
[116] |
T. Sharma, R.K. Khurana, A. Jain, et al., Development of a validated liquid chromatographic method for quantification of sorafenib tosylate in the presence of stress-induced degradation products and in biological matrix employing analytical quality by design approach, Biomed. Chromatogr. 32 (2018), e4169.
|
[117] |
S.A. Waghmare, M. Sumithra, QbD based development and validation of RP-HPLC method for nintedanib esylate: Application to bioanalytical and stability study in plasma, Anal. Chem. Lett. 11 (2021) 392-408.
|
[118] |
Z. Wu, J. Liu, M. Liang, et al., Detection of imatinib based on electrochemical sensor constructed using biosynthesized graphene-silver nanocomposite, Front. Chem. 9 (2021), 670074.
|
[119] |
F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection, New J. Chem. 42 (2018) 16378-16383.
|
[120] |
B. Vercelli, S. Crotti, M. Agostini, Voltammetric responses at modified electrodes and aggregation effects of two anticancer molecules: Irinotecan and sunitinib, New J. Chem. 44 (2020) 18233-18241.
|
[121] |
H. Chen, K. Luo, K. Li, A facile electrochemical sensor based on NiO-ZnO/MWCNT-COOH modified GCE for simultaneous quantification of imatinib and itraconazole, J. Electrochem. Soc. 166 (2019) B697-B707.
|
[122] |
B. Hassan Pour, N. Haghnazari, F. Keshavarzi, et al., High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite, Microchem. J. 165 (2021), 106147.
|
[123] |
N. Rezvani Jalal, T. Madrakian, A. Afkhami, et al., In situ growth of metal-organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination, ACS Appl. Mater. Interfaces 12 (2020) 4859-4869.
|
[124] |
S. Mirsadeghi, H. Zandavar, M. Rahimi, et al., Photocatalytic reduction of imatinib mesylate and imipenem on electrochemical synthesized Al2W3O12 nanoparticle: Optimization, investigation of electrocatalytic and antimicrobial activity, Colloids Surf. A Physicochem. Eng. Asp. 586 (2020), 124254.
|
[125] |
S.A.R. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, J. Electroanal. Chem. 811 (2018) 84-88.
|
[126] |
M. Ghapanvari, T. Madrakian, A. Afkhami, Sensitive determination of imatinib in human biological samples by differential pulse voltammetry based on carbon paste electrode modified by MMWCNTs/PAN NFs, (2018).
|
[127] |
A. Yarahmadi, T. Madrakian, A. Afkhami, et al., Electrochemical determination of sunitinib in biological samples using polyacrylonitrile nanofibers/nickel-zinc-ferrite nanocomposite/carbon paste electrode, J. Electrochem. Soc. 166 (2019) B1268-B1275.
|
[128] |
M. Ghapanvari, T. Madrakian, A. Afkhami, et al., A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug, J. Appl. Electrochem. 50 (2020) 281-294.
|
[129] |
J. Rodriguez, G. Castaneda, I. Lizcano, Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes, Electrochim. Acta 269 (2018) 668-675.
|
[130] |
P.K. Kalambate, Y. Li, Y. Shen, et al., Mesoporous Pd@Pt core-shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: Application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib, Anal. Methods 11 (2019) 443-453.
|
[131] |
A. Moghaddam, H.A. Zamani, H. Karimi-Maleh, A new electrochemical platform for dasatinib anticancer drug sensing using Fe3O4-SWCNTs/ionic liquid paste sensor, Micromachines 12 (2021), 437.
|
[132] |
R.V. Rele, P. Tiwatane, A non-aqueous potentiometric titration method for validation of imatinib mesylate from pharmaceutical dosages, Asia. J. Rese. Chem. 12 (2019) 307-310.
|
[133] |
W. Yang, M. Zhou, N. Oturan, et al., Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode, Electrochim. Acta 305 (2019) 285-294.
|
[134] |
S. Tartaggia, A. Meneghello, O. Bellotto, et al., An SPR investigation into the therapeutic drug monitoring of the anticancer drug imatinib with selective aptamers operating in human plasma, Analyst 146 (2021) 1714-1724.
|
[135] |
S. Fornasaro, A. Bonifacio, E. Marangon, et al., Label-free quantification of anticancer drug imatinib in human plasma with surface enhanced Raman spectroscopy, Anal. Chem. 90 (2018) 12670-12677.
|
[136] |
P. Ravisankar, S. Anusha, P. Srinivasa Babu, Development and validation of UV-spectrophotometric method for determination of dasatinib in bulk and pharmaceutical dosage form and its degradation behaviour under various stress conditions, Int. J. Pharm. Sci. Rev. Res. 53 (2020) 45-50.
|
[137] |
P. Ravisankar, P.S. Babu, S.M. Taslim, et al., Development and validation of UV-spectrophotometric method for determination of sorafenib in pharmaceutical dosage form and its degradation behaviour under various stress conditions, Int. J. Pharm. Sci. Rev. Res. 56 (2019) 12-17.
|
[138] |
E. Souri, E. Amoon, N. Shabani Ravari, et al., Spectrophotometric methods for determination of sunitinib in pharmaceutical dosage forms based on ion-pair complex formation, Iran. J. Pharm. Res. 19 (2020) 103-109.
|
[139] |
I.A. Darwish, N.Y. Khalil, H.W. Darwish, et al., Spectrophotometric and computational investigations of charge transfer complexes of chloranilic acid with tyrosine kinase inhibitors and application to development of novel universal 96-microwell assay for their determination in pharmaceutical formulations, Spectrochim. Acta A Mol. Biomol. Spectrosc. 252 (2021), 119482.
|
[140] |
I.A. Darwish, H.W. Darwish, N.Y. Khalil, et al., Experimental and computational evaluation of chloranilic acid as an universal chromogenic reagent for the development of a novel 96-microwell spectrophotometric assay for tyrosine kinase inhibitors, Molecules 26 (2021), 744.
|
[141] |
A.S. Abdelhameed, M.W. Attwa, M.I. Attia, et al., Development of novel univariate and multivariate validated chemometric methods for the analysis of dasatinib, sorafenib, and vandetanib in pure form, dosage forms and biological fluids, Spectrochim. Acta A Mol. Biomol. Spectrosc. 264 (2022), 120336.
|
[142] |
A.S. Abdelhameed, E.S. Hassan, M.W. Attwa, et al., Simple and efficient spectroscopic-based univariate sequential methods for simultaneous quantitative analysis of vandetanib, dasatinib, and sorafenib in pharmaceutical preparations and biological fluids, Spectrochim. Acta A Mol. Biomol. Spectrosc. 260 (2021), 119987.
|
[143] |
F. Belal, F. Ibrahim, Z.A. Sheribah, et al., New spectrophotometric/chemometric assisted methods for the simultaneous determination of imatinib, gemifloxacin, nalbuphine and naproxen in pharmaceutical formulations and human urine, Spectrochim. Acta A Mol. Biomol. Spectrosc. 198 (2018) 51-60.
|
[144] |
Z. Zhang, J. Chen, Q. Yang, et al., Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib, Sens. Actuat. B Chem. 263 (2018) 625-633.
|
[145] |
D.W. Zidan, W.S. Hassan, M.S. Elmasry, et al., A novel spectrofluorimetric method for determination of imatinib in pure, pharmaceutical preparation, human plasma, and human urine, Luminescence 33 (2018) 232-242.
|
[146] |
H.W. Darwish, A.H. Bakheit, N.S. Al-Shakliah, et al., Development of innovative artificial neural networks for simultaneous determination of lapatinib and foretinib in human urine by micellar enhanced synchronous spectrofluorimetry, Spectrochim. Acta A Mol. Biomol. Spectrosc. 238 (2020), 118438.
|
[147] |
H.W. Darwish, A.H. Bakheit, N.S. Al-Shakliah, et al., Experimental and computational evaluation of kolliphor RH 40 as a new fluorescence enhancer in development of a micellar-based spectrofluorimetric method for determination of lapatinib in tablets and urine, PLoS One 15 (2020), e0239918.
|
[148] |
H. Salem, F.A. Abo Elsoud, D. Heshmat, et al., Resonance Rayleigh scattering technique-using erythrosine B, as novel spectrofluorimetric method for determination of anticancer agent nilotinib: Application for capsules and human plasma, Spectrochim. Acta A Mol. Biomol. Spectrosc. 251 (2021), 119428.
|
[149] |
M. Pirdadeh-Beiranvand, A. Afkhami, T. Madrakian, Ni0.5Zn0.5Fe2O4 nanoparticles-decorated poly (vinyl alcohol) nanofiber as resonance light scattering probe for determination of sunitinib in serum samples, Talanta 218 (2020), 121190.
|
[150] |
H.M. Kashani, T. Madrakian, A. Afkhami, Highly fluorescent nitrogen-doped graphene quantum dots as a green, economical and facile sensor for the determination of sunitinib in real samples, New J. Chem. 41 (2017) 6875-6882.
|
[151] |
M. Forough, K. Farhadi, A. Eyshi, et al., Rapid ionic liquid-supported nano-hybrid composite reinforced hollow-fiber electromembrane extraction followed by field-amplified sample injection-capillary electrophoresis: An effective approach for extraction and quantification of Imatinib mesylate in human plasma, J. Chromatogr. A 1516 (2017) 21-34.
|
[152] |
A.G. Gonzalez, L. Taraba, J. Hranicek, et al., Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, J. Sep. Sci. 40 (2017) 400-406.
|
[153] |
G. Sodeifian, F. Razmimanesh, S. Ali Sajadian, Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model, J. Supercrit. Fluids 146 (2019) 89-99.
|
[154] |
G. Sodeifian, F. Razmimanesh, S. Ali Sajadian, Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC-CO2): Experimental correlations and thermodynamic modeling, J. Mol. Liq. 297 (2020), 111740.
|
[155] |
S. Zhang, W. Jin, Y. Yang, Simultaneous identification and determination of eleven tyrosine kinase inhibitors by supercritical fluid chromatography-mass spectrometry, Anal. Methods 11 (2019) 2211-2222.
|
[156] |
H.A. Alhazmi, A. Ali Bokar Nasib, Y. Ali Musleh, et al., Application of drug-metal ion interaction principle in conductometric determination of imatinib, sorafenib, gefitinib and bosutinib, Open Chem. 18 (2020) 798-807.
|
[157] |
L. Smy, A.J. Sadler, G.A. McMillin, Evaluation of imatinib concentrations in samples submitted for BCR-ABL1 or imatinib testing-evidence to support therapeutic drug monitoring for dose optimization? Ther. Drug Monit. 42 (2020) 559-564.
|
[158] |
T. Saita, Y. Yamamoto, K. Hosoya, et al., An ultra-specific and sensitive sandwich ELISA for imatinib using two anti-imatinib antibodies, Anal. Chim. Acta 969 (2017) 72-78.
|
[159] |
D. Dutta, S. Das, M. Ghosh, Validated HPTLC method for the determination of nintedanib in bulk drug, 22nd International Electronic Conference on Synthetic Organic Chemistry, November 15-December 15, 2018.
|
[160] |
R. Bhole, T. Zombade, C.G. Bonde, et al., Identification and characterization of degradation products by using Ms-Ms studies for developed and validated stability indicating HPTLC method for estimation of Nintedanib Esylate in pharmaceutical dosage form, Eurasian J. Anal. Chem. 14 (2019) 60-70.
|
[161] |
T. Sharma, R. Kaur Khurana, B. Borges, et al., An HPTLC densitometric method for simultaneous quantification of sorafenib tosylate and chrysin: Analytical method development, validation and applications, Microchem. J. 162 (2021), 105821.
|
[162] |
D. Westover, J. Zugazagoitia, B.C. Cho, et al., Mechanisms of acquired resistance to first-and second-generation EGFR tyrosine kinase inhibitors, Ann. Oncol. 29 (2018) i10-i19.
|
[163] |
C. Pottier, M. Fresnais, M. Gilon, et al., Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy, Cancers 12 (2020), 731.
|
[164] |
Q. Jiao, L. Bi, Y. Ren, et al., Advances in studies of tyrosine kinase inhibitors and their acquired resistance, Mol. Cancer 17 (2018), 36.
|
[165] |
S. Wind, D. Schnell, T. Ebner, et al., Clinical pharmacokinetics and pharmacodynamics of afatinib, Clin. Pharmacokinet. 56 (2017) 235-250.
|
[166] |
B.J. Smith, Y. Pithavala, H. Bu, et al., Pharmacokinetics, metabolism, and excretion of [14C] axitinib, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in humans, Drug Metab. Dispos. 42 (2014) 918-931.
|
[167] |
R. Abbas, P.-H. Hsyu, Clinical pharmacokinetics and pharmacodynamics of bosutinib, Clin. Pharmacokinet. 55 (2016) 1191-1204.
|
[168] |
T.R. Johnson, W. Tan, L. Goulet, et al., Metabolism, excretion and pharmacokinetics of [14C] crizotinib following oral administration to healthy subjects, Xenobiotica 45 (2015) 45-59.
|
[169] |
N.P. van Erp, H. Gelderblom, H.J. Guchelaar, Clinical pharmacokinetics of tyrosine kinase inhibitors, Cancer Treat. Rev. 35 (2009) 692-706.
|
[170] |
A. Puszkiel, G. Noe, A. Bellesoeur, et al., Clinical pharmacokinetics and pharmacodynamics of dabrafenib, Clin. Pharmacokinet. 58 (2019) 451-467.
|
[171] |
D. Leveque, G. Becker, K. Bilger, et al., Clinical pharmacokinetics and pharmacodynamics of dasatinib, Clin. Pharmacokinet. 59 (2020) 849-856.
|
[172] |
R.B. Verheijen, J.H. Beijnen, J.H.M. Schellens, et al., Clinical pharmacokinetics and pharmacodynamics of pazopanib: Towards optimized dosing, Clin. Pharmacokinet. 56 (2017) 987-997.
|
[173] |
N.I. Narasimhan, D.J. Dorer, K. Niland, et al., Effects of food on the pharmacokinetics of ponatinib in healthy subjects, J. Clin. Pharm. Ther. 38 (2013) 440-444.
|
[174] |
A. Hulin, J. Stocco, M. Bouattour, Clinical pharmacokinetics and pharmacodynamics of transarterial chemoembolization and targeted therapies in hepatocellular carcinoma, Clin. Pharmacokinet. 58 (2019) 983-1014.
|
[175] |
Y. Ogama, T. Mineyama, A. Yamamoto, et al., A randomized dose-escalation study to assess the safety, tolerability, and pharmacokinetics of ruxolitinib (INC424) in healthy Japanese volunteers, Int. J. Hematol. 97 (2013) 351-359.
|
[176] |
S. Johansson, J. Read, S. Oliver, et al., Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine, Clin. Pharmacokinet. 53 (2014) 837-847.
|
[177] |
H.I. Hurwitz, A. Dowlati, S. Saini, et al., Phase I trial of pazopanib in patients with advanced cancer, Clin. Cancer Res. 15 (2009) 4220-4227.
|
[178] |
B. Peng, P. Lloyd, H. Schran, Clinical pharmacokinetics of imatinib, Clin. Pharmacokinet. 44 (2005) 879-894.
|
[179] |
A.J. Montero, D. Kwon, A. Flores, et al., A phase I clinical, pharmacokinetic, and pharmacodynamic study of weekly or every three week ixabepilone and daily sunitinib in patients with advanced solid tumors, Clin. Cancer Res. 22 (2016) 3209-3217.
|
[180] |
C. Lathia, J. Lettieri, F. Cihon, et al., Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics, Cancer Chemother. Pharmacol. 57 (2006) 685-692.
|
[181] |
X. Tian, H. Zhang, T. Heimbach, et al., Clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor, J. Clin. Pharmacol. 58 (2018) 1533-1540.
|
[182] |
M. Fukudo, Y. Ikemi, Y. Togashi, et al., Population pharmacokinetics/pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer, Clin. Pharmacokinet. 52 (2013) 593-609.
|
[183] |
B. Thiessen, C. Stewart, M. Tsao, et al., A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: Clinical outcomes, pharmacokinetics and molecular correlation, Cancer Chemother. Pharmacol. 65 (2010) 353-361.
|
[184] |
H.C. Swaisland, M. Ranson, R.P. Smith, et al., Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol, Clin. Pharmacokinet. 44 (2005) 1067-1081.
|
[185] |
A. Arora, E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy, J. Pharmacol. Exp. Ther. 315 (2005) 971-979.
|
[186] |
D.H. Josephs, D.S. Fisher, J. Spicer, et al., Clinical pharmacokinetics of tyrosine kinase inhibitors: Implications for therapeutic drug monitoring, Ther. Drug Monit. 35 (2013) 562-587.
|
[187] |
P. Herviou, E. Thivat, D. Richard, et al., Therapeutic drug monitoring and tyrosine kinase inhibitors, Oncol. Lett. 12 (2016) 1223-1232.
|
[188] |
R. Lewis, R. Bruggemann, C. Padoin, et al., Triazole antifungal therapeutic drug monitoring, Sixth European Conference on Infections in Leukaemia Meeting, Sophia Antipolis, France, September 11-12, 2015.
|
[189] |
R.A. Ghiculescu, Therapeutic drug monitoring: Which drugs, why, when and how to do it, Aust. Prescr. 31 (2008) 42-44.
|
[190] |
M. Baccarani, M.W. Deininger, G. Rosti, et al., European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013, Blood 122 (2013) 872-884.
|
[191] |
M. Garcia-Ferrer, A. Wojnicz, G. Mejia, et al., Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: A systematic review and meta-analysis, Clin. Ther. 41 (2019) 2558-2570.e7.
|
[192] |
M. Miura, Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia, Biol. Pharm. Bull. 38 (2015) 645-654.
|