Citation: | Lei Yin, Luyao Yu, Yingxia Guo, Chuya Wang, Yuncheng Ge, Xinyue Zheng, Ning Zhang, Jiansong You, Yong Zhang, Meiyun Shi. Green analytical chemistry metrics for evaluating the greenness of analytical procedures[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 101013. doi: 10.1016/j.jpha.2024.101013 |
[1] |
M.M. Kirchhoff, Promoting sustainability through green chemistry, Resour. Conserv. Recycl. 44(2005)237-243.
|
[2] |
J.B. Zimmerman, P.T. Anastas, H.C. Erythropel, et al., Designing for a green chemistry future, Science 367(2020)397-400.
|
[3] |
R. Mestres, Green chemistry Views and strategies, Environ. Sci. Pollut. Res. Int. 12(2005)128-132.
|
[4] |
F.G. Calvo-Flores, Sustainable chemistry metrics, ChemSusChem 2(2009) 905-919.
|
[5] |
K.N. Ganesh, D. Zhang, S.J. Miller, et al., Green chemistry:A framework for a sustainable future, ACS Omega 6(2021)16254-16258.
|
[6] |
P.T. Anastas, J.C. Warner, Principles of green chemistry. P.T. Anastas, J.C. Warner, Green Chemistry:Theory and Practice, Oxford, New York, 2000, pp. 29-56.
|
[7] |
P. Anastas, N. Eghbali, Green chemistry:Principles and practice, Chem. Soc. Rev. 39(2010)301-312.
|
[8] |
P.M. Nowak, What does it mean that "something is green" ?The fundamentals of a Unified Greenness Theory, Green Chem. 25(2023)4625-4640.
|
[9] |
J. Namiesnik, B. Zygmunt, Role of reference materials in analysis of environmental pollutants, Sci. Total Environ. 228(1999)243-257.
|
[10] |
A.C. Olivieri, G.M. Escandar, Analytical chemistry assisted by multi-way calibration:A contribution to green chemistry, Talanta 204(2019)700-712.
|
[11] |
M. de la Guardia, An integrated approach of analytical chemistry, J. Braz. Chem. Soc. 10(1999)429-437.
|
[12] |
K. Wozniczka, P. Konieczynski, A. Plenis, et al., SPME as a green sample- preparation technique for the monitoring of phytocannabinoids and endocannabinoids in complex matrices, J. Pharm. Anal. 13(2023)1117-1134.
|
[13] |
S. Armenta, S. Garrigues, M. de la Guardia, Green analytical chemistry, Trends Analyt. Chem. 27(2008)497-511.
|
[14] |
M.M. Abdelrahman, Green analytical chemistry metrics and life-cycle assessment approach to analytical method development. M.H. El-Maghrabey, V. Sivasankar, R.N. El-Shaheny, Green Chemical Analysis and Sample Preparations, Springer, Cham, Switzerland, 2022, pp. 29-99.
|
[15] |
A. Gałuszka, Z. Migaszewski, J. Namiesnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trends Analyt. Chem. 50(2013)78-84.
|
[16] |
M. Sajid, J. Płotka-Wasylka, Green analytical chemistry metrics:A review, Talanta 238(2022), 123046.
|
[17] |
A.I. L opez-Lorente, F. Pena-Pereira, S. Pedersen-Bjergaard, et al., The ten prin- ciples of green sample preparation, Trends Analyt. Chem. 148(2022), 116530.
|
[18] |
M. Tobiszewski, Metrics for green analytical chemistry, Anal. Methods 8 (2016)2993-2999.
|
[19] |
M. Tobiszewski, M. Marc, A. Gałuszka, et al., Green chemistry metrics with special reference to green analytical chemistry, Molecules 20(2015) 10928-10946.
|
[20] |
M. Koel, Do we need green analytical chemistry?Green Chem. 18(2016) 923-931.
|
[21] |
M.B. Swanson, G.A. Davis, L.E. Kincaid, et al., A screening method for ranking and scoring chemicals by potential human health and environmental impacts, Environ. Toxicol. Chem. 16(1997)372-383.
|
[22] |
National Environmental Methods Index (NEMI). https://www.nemi.gov/home/.(Accessed 24 August 2023).
|
[23] |
M. de la Guardia, S. Armenta, A Green Evaluation of Existing Analytical Methods. Comprehensive Analytical Chemistry 57, Elsevier, Amsterdam, 2011, pp. 39-57.
|
[24] |
D. Raynie, J. Driver, 13th Annual Green Chemistry and Engineering Conference, College Park, United States, June 23-25, 2009.
|
[25] |
Y. Gaber, U. Tornvall, M.A. Kumar, et al., HPLC-EAT (environmental assess-ment tool):A tool for profiling safety, health and environmental impacts of liquid chromatography methods, Green Chem. 13(2011)2021-2025.
|
[26] |
R. Hartman, R. Helmy, M. Al-Sayah, et al., Analytical method volume intensity (AMVI):A green chemistry metric for HPLC methodology in the pharmaceutical industry, Green Chem. 13(2011)934-939.
|
[27] |
A. Gałuszka, Z.M. Migaszewski, P. Konieczka, et al., Analytical Eco-Scale for assessing the greenness of analytical procedures, Trends Analyt. Chem. 37 (2012)61-72.
|
[28] |
D. Gallart-Mateu, M.L. Cervera, S. Armenta, et al., The importance of incorporating a waste detoxification step in analytical methodologies, Anal. Methods 7(2015)5702-5706.
|
[29] |
Y. Shen, C. Lo, D.R. Nagaraj, et al., Development of greenness index as an evaluation tool to assess reagents:Evaluation based on SDS (safety data sheet) information, Miner. Eng. 94(2016)1-9.
|
[30] |
J. Płotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green analytical procedure index, Talanta 181(2018)204-209.
|
[31] |
P.M. Nowak, P. Koscielniak, What color is your method?Adaptation of the RGB additive color model to analytical method evaluation, Anal. Chem. 91 (2019)10343-10352.
|
[32] |
A. Ballester-Caudet, P. Campíns-Falco, B. P erez, et al., A new tool for evalu- ating and/or selecting analytical methods:Summarizing the information in a hexagon, Trends Analyt. Chem. 118(2019)538-547.
|
[33] |
M.B. Hicks, W. Farrell, C. Aurigemma, et al., Making the move towards modernized greener separations:Introduction of the analytical method greenness score (AMGS) calculator, Green Chem. 21(2019) 1816-1826.
|
[34] |
F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE-analytical GREEnness metric approach and software, Anal. Chem. 92(2020)10076-10082.
|
[35] |
J. Płotka-Wasylka, W. Wojnowski, Complementary green analytical procedure index (ComplexGAPI) and software, Green Chem. 23(2021)8657-8665.
|
[36] |
P.M. Nowak, R. Wietecha-Posłuszny, J. Pawliszyn, White Analytical Chemistry:An approach to reconcile the principles of Green Analytical Chemistry and functionality, Trends Analyt. Chem. 138(2021), 116223.
|
[37] |
W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, et al., AGREEprep e Analytical greenness metric for sample preparation, Trends Analyt. Chem. 149(2022), 116553.
|
[38] |
N. Manousi, W. Wojnowski, J. Płotka-Wasylka, et al., Blue applicability grade index (BAGI) and software:A new tool for the evaluation of method practicality, Green Chem. 25(2023)7598-7604.
|
[39] |
P.M. Nowak, R. Wietecha-Posłuszny, J. Płotka-Wasylka, et al., How to evaluate methods used in chemical laboratories in terms of the total chemical risk?e A ChlorTox Scale, Green Anal. Chem. 5(2023), 100056.
|
[40] |
M. Shi, X. Zheng, N. Zhang, et al., Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods, Trends Analyt. Chem. 166(2023), 117211.
|
[41] |
S. Razic, J. Arsenijevic, S. Ðogo Mracevic, et al., Greener chemistry in analytical sciences:From green solvents to applications in complex matrices. Current challenges and future perspectives:A critical review, Analyst 148 (2023)3130-3152.
|
[42] |
L.P. Kowtharapu, N.K. Katari, S.K. Muchakayala, et al., Green metric tools for analytical methods assessment critical review, case studies and crucify, Trends Analyt. Chem. 166(2023), 117196.
|
[43] |
S.I. Kaya, A. Cetinkaya, S.A. Ozkan, Green analytical chemistry approaches on environmental analysis, Trends Environ. Anal. Chem. 33(2022), e00157.
|
[44] |
A. Cetinkaya, S.I. Kaya, S.A. Ozkan, An overview of the current progress in green analytical chemistry by evaluating recent studies using greenness assessment tools, Trends Analyt. Chem. 168(2023), 117330.
|
[45] |
L.H. Keith, L.U. Gron, J.L. Young, Green analytical methodologies, Chem. Rev. 107(2007)2695-2708.
|
[46] |
United States Environmental Protection Agency (EPA), Persistent, bioaccumulative, and toxic (PBT) chemicals under TSCA Section 6(h). https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/persistentbioaccumulative-and-toxic-pbt-chemicals.(Accessed 24 August 2023).
|
[47] |
United States Environmental Protection Agency (EPA), Listed characteristic and mixed radiological wastes. https://www.epa.gov/hw/defininghazardous-waste-listed-characteristic-and-mixed-radiological-wastes. (Accessed 24 August 2023).
|
[48] |
O.A. El-Naem, S.S. Saleh, Eco-friendly UPLC-MS/MS analysis of possible addon therapy for COVID-19 in human plasma:Insights of greenness assessment, Microchem. J. 166(2021), 106234.
|
[49] |
M.M.Z. Sharkawi, M.T. Safwat, E.A. Abdelaleem, et al., Chromatographic analysis of bromhexine and oxytetracycline residues in milk as a drug analysis medium with greenness profile appraisal, Anal. Methods 14(2022) 4064-4076.
|
[50] |
R.M. Soliman, N.M. Mostafa, Y.M. Fayez, et al., Novel spectrophotometric approaches for the simultaneous quantification of ternary common cold mixture containing paracetamol with a challenging formulation ratio: Greenness profile evaluation, J. AOAC Int. 105(2022)1268-1279.
|
[51] |
M. Tobiszewski, A. Mechlinska, J. Namiesnik, Green analytical chemistry: Theory and practice, Chem. Soc. Rev. 39(2010)2869-2878.
|
[52] |
M.Y. Fares, M.A. Hegazy, G.M. El-Sayed, et al., Quality by design approach for green HPLC method development for simultaneous analysis of two thalassemia drugs in biological fluid with pharmacokinetic study, RSC Adv. 12 (2022)13896-13916.
|
[53] |
K. Van Aken, L. Strekowski, L. Patiny, EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters, Beilstein J. Org. Chem. 2(2006), 3.
|
[54] |
S. Garrigues, S. Armenta, M. de la Guardia, Green strategies for decontamination of analytical wastes, Trends Analyt. Chem. 29(2010)592-601.
|
[55] |
L. Ramos, J.J. Ramos, U.A.T. Brinkman, Miniaturization in sample treatment for environmental analysis, Anal. Bioanal. Chem. 381(2005)119-140.
|
[56] |
United Nations, Globally Harmonized System of Classification and Labeling of Chemicals (GHS, Rev. 4). https://unece.org/ghs-rev8-2019.(Accessed 24 August 2023).
|
[57] |
P.J. Dunn, A.S. Wells, M.T. Williams, Future trends for green chemistry in the pharmaceutical industry. Green Chemistry in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2010, pp. 333-355.
|
[58] |
W. Wardencki, J. Curyło, J. Namiesnik, Green chemistry e Current and future issues, Pol. J. Environ. Stud. 14(2005)389-395.
|
[59] |
C. Turner, Sustainable analytical chemistry e more than just being green, Pure Appl. Chem. 85(2013)2217-2229.
|
[60] |
J.M. Kokosa, A. Przyjazny, Green microextraction methodologies for sample preparations, Green Anal. Chem. 3(2022), 100023.
|
[61] |
X. Duan, X. Liu, Y. Dong, et al., A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile, J. AOAC Int. 103(2020) 1181-1189.
|
[62] |
P.V.B. Bahia, M.M. Nascimento, J.B. de Andrade, et al., Microscale solid-liquid extraction:A green alternative for determination of n-alkanes in sediments, J. Chromatogr. A 1685(2022), 463635.
|
[63] |
N. Hemdan Abou-Taleb, N. Mahmoud El-Enany, D. Tawfik El-Sherbiny, et al., Digitally enhanced thin layer chromatography for simultaneous determination of norfloxacin and tinidazole with the aid of Taguchi orthogonal array and desirability function approach:Greenness assessment by analytical EcoScale, J. Sep. Sci. 43(2020)1195-1202.
|
[64] |
A.M. Michael, H.M. Lotfy, C.K. Nessim, Greenness profile and whiteness assessment of the stability-indicating HPLC method for the assay of levetiracetam, Microchem. J. 190(2023), 108669.
|
[65] |
S.G. Elsheikh, A.M.E. Hassan, Y.M. Fayez, et al., Green analytical chemistry and experimental design:A combined approach for the analysis of zonisamide, BMC Chem 17(2023), 38.
|
[66] |
A. El-Hawiet, F.M. Elessawy, M.A. El Demellawy, et al., Green fast and simple UPLC-ESI-MRM/MS method for determination of trace water-soluble vitamins in honey:Greenness assessment using GAPI and analytical eco-scale, Microchem. J. 181(2022), 107625.
|
[67] |
H.M. El-Sayed, H.E. Abdellatef, H.A.M. Hendawy, et al., DoE-enhanced development and validation of eco-friendly RP-HPLC method for analysis of safinamide and its precursor impurity:QbD approach, Microchem. J. 190 (2023), 108730.
|
[68] |
D.R. Conover, S.R. Ferreira, Codes and Standards Update March 2019. https://www.osti.gov/servlets/purl/1761943.(Accessed 24 August 2023).
|
[69] |
C. Furio-Sanz, D. Gallart-Mateu, S. Armenta, et al., A green evaluation of ecstasy determination methods by using different greenness criteria, Talanta Open 7(2023), 100195.
|
[70] |
M.S. Imam, M.M. Abdelrahman, How environmentally friendly is the analytical process?A paradigm overview of ten greenness assessment metric approaches for analytical methods, Trends Environ. Anal. Chem. 38(2023), e00202.
|
[71] |
A. Abdar, A. Sarafraz-Yazdi, A. Amiri, et al., Magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in water samples by Fe3O4@polypyrrole/carbon nanotubes, J. Sep. Sci. 39(2016)2746-2753.
|
[72] |
L. Hou, C. Zhao, G. Wu, et al., Application of ComplexGAPI for the green assessment of a deep eutectic solvent-based ferrofluid assisted liquid-liquid microextraction method for detection of dimethyl phthalate in beverage samples, Anal. Methods 14(2022)3989-3998.
|
[73] |
N. Manousi, A. Ferracane, A. Kabir, et al., A monolithic capsule phase microextraction method combined with HPLC-DAD for the monitoring of benzoyl urea insecticides in apple juice samples, Microchem. J. 181(2022), 107768.
|
[74] |
S.M. Eid, K.A.M. Attia, A. El-Olemy, et al., An innovative nanoparticle-modified carbon paste sensor for ultrasensitive detection of lignocaine and its extremely carcinogenic metabolite residues in bovine food samples:Application of NEMI, ESA, AGREE, ComplexGAPI, and RGB12 algorithms, Food Chem. 426(2023), 136579.
|
[75] |
I. Sami, Y. Rostom, H.H. Monir, et al., Sustainable spectrophotometric resolution techniques for a spectrally overlapping mixture of Articaine Hydrochloride and Epinephrine Bitartrate with challenging formulation ratio, Sustain. Chem. Pharm. 32(2023), 100994.
|
[76] |
D. Moema, T.A. Makwakwa, B.E. Gebreyohannes, et al., Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography:Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale, J. Food Compos. Anal. 117(2023), 105131.
|
[77] |
G. Magdy, F. Belal, A.K. El-Deen, Green synchronous spectrofluorimetric method for the simultaneous determination of agomelatine and venlafaxine in human plasma at part per billion levels, Sci. Rep. 12(2022), 22559.
|
[78] |
E.A. Rashad, S.S. Elsayed, J.J.M. Nasr, et al., New ecological first derivative synchronous spectrofluorimetric method for simultaneous quantification of carvedilol and ivabradine in tablets, Spectrochim. Acta A Mol. Biomol. Spectrosc. 289(2023), 122074.
|
[79] |
H.M. Marzouk, E.A. Ibrahim, M.A. Hegazy, et al., Sustainable liquid chromatographic determination and purity assessment of a possible add-on triple-action over-the-counter pharmaceutical combination in COVID-19, Microchem. J. 178(2022), 107400.
|
[80] |
J. Ma, R. Xiao, J. Li, et al., Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry, J. Chromatogr. A 1217(2010)5462-5469.
|
[81] |
A.R. Hussein, M.S. Gburi, N.M. Muslim, et al., A greenness evaluation and environmental aspects of solidified floating organic drop microextraction for metals:A review, Trends Environ. Anal. Chem. 37(2023), e00194.
|
[82] |
N. Jatkowska, M. Marc, M. de la Guardia, et al., Greening procedures and analytical parameters. The polychlorinated naphthalenes analysis in complex matrices as proof of concept, Trends Analyt. Chem. 167(2023), 117222.
|
[83] |
R. Oliveira Martins, G. Guimaraes Souza, L. Santos Machado, et al., Hollow fiber liquid-phase microextraction of multiclass pesticides in soil samples:A green analytical approach for challenging environmental monitoring analysis, Microchem. J. 193(2023), 109028.
|
[84] |
M. Schüller, T.A.P. McQuade, M.S.S. Bergh, et al., Determination of tryptamine analogs in whole blood by 96-well electromembrane extraction and UHPLCMS/MS, Talanta Open 7(2023), 100171.
|
[85] |
S. Yıldırım, K. Fikarova, V. Pila rova, et al., Lab-in-syringe automated protein precipitation and salting-out homogenous liquid-liquid extraction coupled online to UHPLC-MS/MS for the determination of beta-blockers in serum, Anal. Chim. Acta 1251(2023), 340966.
|
[86] |
M. Ojaghzadeh Khalil Abad, M. Masrournia, A. Javid, Simultaneous determination of paclitaxel and vinorelbine from environmental water and urine samples based on dispersive micro solid phase extraction-HPLC using a green and novel MOF-On-MOF sorbent composite, Microchem. J. 187(2023), 108394.
|
[87] |
T.A. Zughaibi, Evaluation of analytical efficiency, sustainability and applicability of microextraction based analytical methods for drugs of abuse using a white analytical chemistry approach, Sustain. Chem. Pharm. 39(2024), 101566.
|
[88] |
J. Dobrowolska-Iwanek, M. Jamka-Kasprzyk, M. Rusin, et al., Developed and validated capillary isotachophoresis method for the rapid determining organic acids in children's saliva, Molecules 28(2023), 1092.
|
[89] |
S. Yenduri, H. Sulthana, N.P. Koppuravuri, Sustainablity evaluation of existed HPLC based analytical methods for quantification of amlodipine besylate and telmisartan using RGB model:A whiteness approach, Green Anal. Chem. 6 (2023), 100074.
|
[90] |
P. Swit, J. Orze ł, S. Maslanka, Monitoring of PAHs in simulated natural and artificial fires by HPLC-DAD-FLD with the application of Multi-Component Integrated calibration method to improve quality of analytical results, Measurement 196(2022), 111242.
|
[91] |
G. Magdy, A.S. Radwan, H. Elmansi, et al., Ultrasensitive spectrofluorimetric approach for quantitation of the novel antiparkinsonian drug safinamide in different matrices at nanogram levels:Assessment of greenness and whiteness profiles, Sustain. Chem. Pharm. 38(2024), 101448.
|
[92] |
H.K. Ashour, M.A. Korany, A.G. Abdelhamid, et al., Stability indicating multipurpose HPLC-DAD method for synchronic analysis of three non-steroidal anti-inflammatory drugs with a co-formulated preservative in ophthalmic dosage forms e Greenness/whiteness assessment, Microchem. J. 199(2024), 110092.
|
[93] |
M. Tomikj, M. Bozinovska, N. Anevska-Stojanovska, et al., Sustainable and white HPLC method for simultaneous determination of amlodipine and atorvastatin in film-coated tablet, Green Anal. Chem. 8(2024), 100103.
|
[94] |
M.A. Korany, R.M. Youssef, M.A.A. Ragab, et al., A synergistic chemometric combination for whiteness and greenness assessed HPLC-DAD assay of aqueous extracts of ivy and thyme and potassium sorbate in a syrup formula, Microchem. J. 196(2024), 109616.
|
[95] |
H.K. Chanduluru, A. Sugumaran, Eco-friendly estimation of isosorbide dinitrate and hydralazine hydrochloride using Green Analytical Quality by Design-based UPLC Method, RSC Adv. 11(2021)27820-27831.
|
[96] |
H.K. Chanduluru, A. Sugumaran, Estimation of pitavastatin and ezetimibe using UPLC by a combined approach of analytical quality by design with green analytical technique, Acta Chromatogr. 34(2022)361-372.
|
[97] |
M. Henrique Petrarca, E. Vicente, S. Amelia Verdiani Tfouni, Single-Run gas chromatography-mass spectrometry method for the analysis of phthalates, polycyclic aromatic hydrocarbons, and pesticide residues in infant formula based on dispersive microextraction techniques, Microchem. J. 197(2024), 109824.
|
[98] |
B. Olayanju, A. Kabir, N. Manousi, et al., Application of sol-gel universal sorbent coated fabric phase sorptive extraction membranes in combination with high-performance liquid chromatography-ultraviolet detection to monitor endocrine-disrupting chemicals in milk and environmental water samples, Sep, Sci. Plus (2023), 2300101.
|
[99] |
A.A. Essawy, I.H. Alsohaimi, H.M.A. Hassan, et al., Basic fuchsin dye as the first fluorophore for optical sensing of morpholine in fruits crust and urine samples, Anal. Chem. 96(2024)373-380.
|
[100] |
P.M. Nowak, A. Bis, A. Zima, ChlorTox Base e a useful source of information on popular reagents in terms of chemical hazards and greenness assessment, Green Anal. Chem. 6(2023), 100065.
|
[101] |
H. Darji, Z. Dedania, Simultaneous estimation of Azelnidipine and Metoprolol succinate with greenness assessment using HPLC and UV-spectrophotometric methods, Green Anal. Chem. 7(2023), 100079.
|
[102] |
S.B. Mammana, M.F. Jofre, A.C. Cohen, et al., Selective extraction and pre- concentration of melatonin mediated by hydrophobic natural deep eutectic systems, Microchem. J. 194(2023), 109317.
|
[103] |
P. Alam, F. Shakeel, M. Iqbal, et al., Quantification of pomalidomide using conventional and eco-friendly stability-indicating HPTLC assays:A contrast of validation parameters, ACS Omega 8(2023)30655-30664.
|
[104] |
K.F.M. Amin, Greenness-sustainability metrics for assessment smart-chemometric spectrophotometric strategy for evaluation of the combination of six gastric proton-pump inhibitors with two selected impurities, MethodsX 12(2024), 102670.
|
[105] |
H.M. Marzouk, S. El-Hanboushy, R.H. Obaydo, et al., Sustainable chromatographic quantitation of multi-antihypertensive medications:Application on diverse combinations containing hydrochlorothiazide along with LC-MS/MS profiling of potential impurities:Greenness and whiteness evaluation, BMC Chem. 17(2023), 101.
|
[106] |
A. Ballester-Caudet, R. Navarro-Utiel, I. Campos-Hernandez, et al., Evaluation of the sample treatment influence in green and sustainable assessment of liquid chromatography methods by the HEXAGON tool:Sulfonatebased dyes determination in meat samples, Green Anal. Chem. 3(2022), 100024.
|