Citation: | Karolina Knap, Konrad Kwiecień, Jonasz Czajkowski, Rafał Szostecki, Daria Niewolik, Katarzyna Jaszcz, Peter Olinga, Katarzyna Reczyńska-Kolman, Elżbieta Pamuła. Drug delivery system of curcumin to the lungs based on poly(3-alloxyloxy-1,2-propylene succinate)-sebacic acid copolymers[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101434 |
[1] |
J. Wisnivesky, J.P. De-Torres, The global burden of pulmonary diseases: Most prevalent problems and opportunities for improvement, Ann. Glob. Health 85 (2019), 1.
|
[2] |
A. Kuzmov, T. Minko, Nanotechnology approaches for inhalation treatment of lung diseases, J. Control. Release 219 (2015) 500-518.
|
[3] |
H. Douafer, V. Andrieu, J.M. Brunel, Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases, J. Control. Release 325 (2020) 276-292.
|
[4] |
K. Knap, K. Kwiecien, K. Reczynska-Kolman, et al., Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations, Regen. Biomater. 10 (2022), rbac099.
|
[5] |
S.Y. Kim, D. Naskar, S.C. Kundu, et al., Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer, Sci. Rep. 5 (2015), 11878.
|
[6] |
T. Feng, H. Tian, C. Xu, et al., Doxorubicin-loaded PLGA microparticles with internal pores for long-acting release in pulmonary tumor inhalation treatment, Chin. J. Polym. Sci. 33 (2015) 947-954.
|
[7] |
T. Feng, H. Tian, C. Xu, et al., Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment, Eur. J. Pharm. Biopharm. 88 (2014) 1086-1093.
|
[8] |
J.Y. Tse, A. Koike, K. Kadota, et al., Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs, Eur. J. Pharm. Biopharm. 167 (2021) 116-126.
|
[9] |
C. Liu, L. Lin, Z. Huang, et al., Novel inhalable ciprofloxacin dry powders for bronchiectasis therapy: Mannitol-silk fibroin binary microparticles with high-payload and improved aerosolized properties, AAPS PharmSciTech 20 (2019), 85.
|
[10] |
G. Kasten, L.F. Silva, E. Lemos-Senna, Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery, Drug Dev. Ind. Pharm. 42 (2016) 776-787.
|
[11] |
L. Zhang, L. Yang, X. Zhang, et al., Sustained therapeutic efficacy of budesonide-loaded chitosan swellable microparticles after lung delivery: Influence of in vitro release, treatment interval and dose, J. Control. Release 283 (2018) 163-174.
|
[12] |
J. Li, H. Zheng, E. Xu, et al., Inhalable PLGA microspheres: Tunable lung retention and systemic exposure via polyethylene glycol modification, Acta Biomater. 123 (2021) 325-334.
|
[13] |
H. Sies, Polyphenols and health: Update and perspectives, Arch. Biochem. Biophys. 501 (2010) 2-5.
|
[14] |
A. Li, S. Li, Y. Zhang, et al., Resources and biological activities of natural polyphenols, Nutrients 6 (2014) 6020-6047.
|
[15] |
R. Mahar, A. Chakraborty, N. Nainwal, Formulation of resveratrol-loaded polycaprolactone inhalable microspheres using tween 80 as an emulsifier: Factorial design and optimization, AAPS PharmSciTech 24 (2023), 131.
|
[16] |
Y. Hu, M. Li, M. Zhang, et al., Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles, Int. J. Pharm. 551 (2018) 212-222.
|
[17] |
P. Lai, C.C. Hsu, T.H. Liu, et al., Mixed micelles from methoxy poly(ethylene glycol)-polylactide and methoxy poly(ethylene glycol)-poly(sebacic anhydride) copolymers as drug carriers, React. Funct. Polym. 72 (2012) 846-855.
|
[18] |
P.G. Reddy, A.J. Domb, Polyanhydride chemistry, Biomacromolecules 23 (2022) 4959-4984.
|
[19] |
J. Fiegel, J. Fu, J. Hanes, Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs, J. Control. Release 96 (2004) 411-423.
|
[20] |
D. Niewolik, B. Bednarczyk-Cwynar, P. Ruszkowski, et al., Bioactive betulin and PEG based polyanhydrides for use in drug delivery systems, Int. J. Mol. Sci. 22 (2021), 1090.
|
[21] |
K. Jaszcz, Synthesis and characterization of new functional poly(ester-anhydride)s based on succinic and sebacic acids, Macromol. Symp. 254 (2007) 109-116.
|
[22] |
K. Knap, K. Reczynska-Kolman, K. Kwiecien, et al., Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies, Biomater. Adv. 153 (2023), 213540.
|
[23] |
K. Kwiecień, K. Reczyńska-Kolman, D. Niewolik, K. Jaszcz, E. Pamuła, Poly(sebacic anhydride) microparticles loaded with curcumin for pulmonary purposes, (2021). https://doi.org/10.34821/ENG.BIOMAT.162.2021.7-12.
|
[24] |
M. Ali Kaleem, M.Z. Alam, M. Khan, et al., An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes, Met. Powder Rep. 76 (2021) S50-S54.
|
[25] |
M.J.R. Ruigrok, J. Xian, H.W. Frijlink, et al., siRNA-mediated protein knockdown in precision-cut lung slices, Eur. J. Pharm. Biopharm. 133 (2018) 339-348.
|
[26] |
M.J.R. Ruigrok, J. Tomar, H.W. Frijlink, et al., The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices, Sci. Rep. 9 (2019), 16239.
|
[27] |
K. Jaszcz, J. Lukaszczyk, M. Smiga-Matuszowicz, Synthesis of functional poly(ester-andydride)s based on succinic acid, React. Funct. Polym. 68 (2008) 351-360.
|
[28] |
K. Jaszcz, J. Lukaszczyk, Studies on hydrolytic degradation of poly(ester-anhydride)s based on oligosuccinate and aliphatic diacids, Polym. Degrad. Stab. 96 (2011) 1973-1983.
|
[29] |
J. McMurry, Chemia organiczna. Cz. 4 (rozdziały 19-26), Wyd. 3, 6 dodr, Wydawnictwo Naukowe PWN, Warszawa, 2016.
|
[30] |
R.M. Silverstein, S. Jankowski, D.J. Kiemle, M. Potrzebowski, M. Sochacki, F.X. Webster, Spektroskopowe metody identyfikacji związków organicznych, Wyd. 2. uaktual., 1. dodr, Wydawnictwo Naukowe PWN, Warszawa, 2008.
|
[31] |
M.M. Yallapu, M. Jaggi, S.C. Chauhan, Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells, Colloids Surf. B Biointerfaces 79 (2010) 113-125.
|
[32] |
R.A. Fugita, D.A. Galico, R. Guerra, G. Perpetuo, O. Treu-Filho, M.S. Galhiane, R.A. Mendes, G. Bannach, Thermal behaviour of curcumin, Braz. J. Therm. Anal. 1 (2012) 19-23.
|
[33] |
V.T. Bich, N.T. Thuy, N.T. Binh, et al., Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa),. Physics and Engineering of New Materials. Springer Berlin Heidelberg, (2009), pp 71–278.
|
[34] |
M. Eameema, L.S. Duvvuri, W. Khan, et al., Polyanhydrides,. Natural and Synthetic Biomedical Polymers. Elsevier, (2014), pp 81–192.
|
[35] |
B. Patel, N. Gupta, F. Ahsan, Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome, Eur. J. Pharm. Biopharm. 89 (2015) 163-174.
|
[36] |
Q. Liu, J. Guan, L. Qin, et al., Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery, Drug Discov. Today 25 (2020) 150-159.
|
[37] |
D.S. Katti, S. Lakshmi, R. Langer, et al., Toxicity, biodegradation and elimination of polyanhydrides, Adv. Drug Deliv. Rev. 54 (2002) 933-961.
|
[38] |
A.H.L. Chow, H.H.Y. Tong, P. Chattopadhyay, et al., Particle engineering for pulmonary drug delivery, Pharm. Res. 24 (2007) 411-437.
|
[39] |
L. Gallo, V. Bucala, M.V. Ramirez-Rigo, Formulation and characterization of polysaccharide microparticles for pulmonary delivery of sodium cromoglycate, AAPS PharmSciTech 18 (2017) 1634-1645.
|
[40] |
N.E. Ceschan, V. Bucala, M.V. Ramirez-Rigo, Polymeric microparticles containing indomethacin for inhalatory administration, Powder Technol. 285 (2015) 51-61.
|
[41] |
F. Araujo, C. Martins, C. Azevedo, et al., Chemical modification of drug molecules as strategy to reduce interactions with mucus, Adv. Drug Deliv. Rev. 124 (2018) 98-106.
|
[42] |
S.K. Lai, Y. Wang, J. Hanes, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues, Adv. Drug Deliv. Rev. 61 (2009) 158-171.
|
[43] |
L. Lv, Y. Shen, M. Li, et al., Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: Preparation, characterization, and in vitro evaluation, Biomed Res. Int. 2013 (2013), 507103.
|
[44] |
L. Lv, Y. Shen, M. Li, et al., Preparation and in vitro evaluation of novel poly(anhydride-ester)-based amphiphilic copolymer curcumin-loaded micelles, J. Biomed. Nanotechnol. 10 (2014) 324-335.
|
[45] |
M. Nassimi, C. Schleh, H.D. Lauenstein, et al., Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models, Inhal. Toxicol. 21 (2009) 104-109.
|
[46] |
A.J. Domb, R. Nudelman, In vivo and in vitro elimination of aliphatic polyanhydrides, Biomaterials 16 (1995) 319-323.
|