Citation: | Xiaofan Sun, Lisha Zhou, Yi Wang, Guoliang Deng, Xinran Cao, Bowen Ke, Xiaoqi Wu, Yanhong Gu, Haibo Cheng, Qiang Xu, Qianming Du, Hongqi Chen, Yang Sun. Single-cell analyses reveal cannabidiol rewires tumor microenvironment via inhibiting alternative activation of macrophage and synergizes with anti-PD-1 in colon cancer[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 726-744. doi: 10.1016/j.jpha.2023.04.013 |
F. Ciardiello, D. Ciardiello, G. Martini, et al., Clinical management of metastatic colorectal cancer in the era of precision medicine. CA A Cancer J. Clin., 72 (2022) 372-401.
|
R.L. Siegel, K.D. Miller, A. Goding Sauer, et al., Colorectal cancer statistics, 2020. CA A Cancer J. Clin., 70 (2020) 145-164.
|
K. Ganesh, Z.K. Stadler, A. Cercek, et al., Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 16 (2019) 361-375.
|
K. Ganesh, Optimizing immunotherapy for colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 19 (2022) 93-94.
|
S.P. Kubli, T. Berger, D.V. Araujo, et al., Beyond immune checkpoint blockade: emerging immunological strategies. Nat. Rev. Drug Discov., 20 (2021) 899-919.
|
M. Schmitt and F.R. Greten, The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol., 21 (2021) 653-667.
|
Y. Tie, F. Tang, Y.Q. Wei, et al., Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol., 15 (2022) 61.
|
D.G. DeNardo and B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol., 19 (2019) 369-382.
|
A. Mantovani, P. Allavena, F. Marchesi, et al., Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov., 21 (2022) 799-820.
|
X. Xiang, J. Wang, D. Lu, et al., Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Targeted Ther., 6 (2021) 75.
|
P.J. Murray, J.E. Allen, S.K. Biswas, et al., Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41 (2014) 14-20.
|
R. Stienstra, R.T. Netea-Maier, N.P. Riksen, et al., Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metabol., 26 (2017) 142-156.
|
J. Van den Bossche, L.A. O'Neill, and D. Menon, Macrophage immunometabolism: where are we (going)? Trends Immunol., 38 (2017) 395-406.
|
M. Zhang, X. Pan, K. Fujiwara, et al., Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct. Targeted Ther., 6 (2021) 366.
|
J.L. Wilson and T. Weichhart, TORching a semaphore for alternative macrophage activation. Nat. Immunol., 19 (2018) 512-514.
|
S. Kang, Y. Nakanishi, Y. Kioi, et al., Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization. Nat. Immunol., 19 (2018) 561-570.
|
R. Dash, M.C. Ali, I. Jahan, et al., Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res. Rev., 65 (2021) 101209.
|
P. Grimison, A. Mersiades, A. Kirby, et al., Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: a randomised, placebo-controlled, phase II crossover trial. Ann. Oncol., 31 (2020) 1553-1560.
|
A. Oláh, B.I. Tóth, I. Borbíró, et al., Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Invest., 124 (2014) 3713-3724.
|
M. Rajesh, P. Mukhopadhyay, S. Batkai, et al., Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol., 56 (2010) 2115-2125.
|
T. Huang, T. Xu, Y. Wang, et al., Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy, 17 (2021) 3592-3606.
|
A. Shrivastava, P.M. Kuzontkoski, J.E. Groopman, et al., Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Therapeut., 10 (2011) 1161-1172.
|
B. Kis, F.C. Ifrim, V. Buda, et al., Cannabidiol-from plant to human body: a promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci., 20 (2019) 5905.
|
L. Lyon, THC and CBD: is medical cannabis overhyped or under-prescribed? Brain, 143 (2020) e34.
|
S.C. Britch, S. Babalonis, and S.L. Walsh, Cannabidiol: pharmacology and therapeutic targets. Psychopharmacology, 238 (2021) 9-28.
|
E. Driehuis, K. Kretzschmar, and H. Clevers, Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 15 (2020) 3380-3409.
|
A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36 (2018) 411-420.
|
G. Yu, L.G. Wang, Y. Han, et al., clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS., 16 (2012) 284-287.
|
T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive integration of single-cell data. Cell, 177 (2019) 1888-1902 e21.
|
J.M. Granja, M.R. Corces, S.E. Pierce, et al., ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet., 53 (2021) 403-411.
|
I. Korsunsky, N. Millard, J. Fan, et al., Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods, 16 (2019) 1289-1296.
|
D. van Dijk, R. Sharma, J. Nainys, et al., Recovering gene interactions from single-cell data using data diffusion. Cell, 174 (2018) 716-729 e27.
|
Y. Zhang, T. Liu, C.A. Meyer, et al., Model-based analysis of ChIP-seq (MACS). Genome Biol., 9 (2008) R137.
|
C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32 (2014) 381-386.
|
X. Qiu, A. Hill, J. Packer, et al., Single-cell mRNA quantification and differential analysis with Census. Nat. Methods, 14 (2017) 309-315.
|
X. Qiu, Q. Mao, Y. Tang, et al., Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods, 14 (2017) 979-982.
|
A. Subramanian, P. Tamayo, V.K. Mootha, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102 (2005) 15545-15550.
|
S. Hänzelmann, R. Castelo, and J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf., 14 (2013) 7.
|
S. Jin, C.F. Guerrero-Juarez, L. Zhang, et al., Inference and analysis of cell-cell communication using CellChat. Nat. Commun., 12 (2021) 1088.
|
Y.J. Li, C. Zhang, A. Martincuks, et al., STAT proteins in cancer: orchestration of metabolism. Nat. Rev. Cancer, 23 (2023) 115-134.
|
A. Kauppinen, T. Suuronen, J. Ojala, et al., Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 25 (2013) 1939-1948.
|
J. Qi, H. Sun, Y. Zhang, et al., Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun., 13 (2022) 1742.
|
M. Faas, N. Ipseiz, J. Ackermann, et al., IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity, 54 (2021) 2531-2546 e5.
|
S.Y. Weng, X. Wang, S. Vijayan, et al., IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal. EBioMedicine, 29 (2018) 92-103.
|
K. Mehla and P.K. Singh, Metabolic regulation of macrophage polarization in cancer. Trends Cancer, 5 (2019) 822-834.
|
M.M. Kaneda, K.S. Messer, N. Ralainirina, et al., PI3Kgamma is a molecular switch that controls immune suppression. Nature, 539 (2016) 437-442.
|
E. Vergadi, E. Ieronymaki, K. Lyroni, et al., Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol., 198 (2017) 1006-1014.
|
A.J. Covarrubias, H.I. Aksoylar, J. Yu, et al., Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife, 5 (2016) 11612.
|
X. Li, R. Liu, X. Su, et al., Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol. Cancer, 18 (2019) 177.
|
H.M. Chen, W. van der Touw, Y.S. Wang, et al., Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J. Clin. Invest., 128 (2018) 5647-5662.
|
A.N. Chamseddine, T. Assi, O. Mir, et al., Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: a TAM-pting approach. Pharmacol. Ther., 231 (2022) 107986.
|
C.W. Wanderley, D.F. Colón, J.P.M. Luiz, et al., Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res., 78 (2018) 5891-5900.
|
L. Sun, T. Kees, A.S. Almeida, et al., Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell, 39 (2021) 1361-1374 e9.
|
C. Gross, D.A. Ramirez, S. McGrath, et al., Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol., 12 (2021) 725136.
|
P. Massi, A. Vaccani, S. Ceruti, et al., Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J. Pharmacol. Exp. Therapeut., 308 (2004) 838-845.
|
S. Jeong, H.K. Yun, Y.A. Jeong, et al., Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett., 447 (2019) 12-23.
|
S. Jeong, B.G. Kim, D.Y. Kim, et al., Cannabidiol overcomes Oxaliplatin resistance by enhancing NOS3- and SOD2-induced autophagy in human colorectal cancer cells. Cancers, 11 (2019) 781.
|
Y. Zhu, Z. Ouyang, H. Du, et al., New opportunities and challenges of natural products research: when target identification meets single-cell multiomics. Acta Pharm. Sin. B, 12 (2022) 4011-4039.
|
G. Deng, L. Zhou, B. Wang, et al., Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation. J. Immunother. Cancer, 10 (2022) e004874.
|
E. Sanchez-Lopez, Z. Zhong, A. Stubelius, et al., Choline uptake and metabolism modulate macrophage IL-1beta and IL-18 production. Cell Metabol., 29 (2019) 1350-1362 e7.
|
X. Xiong, S. Chen, J. Shen, et al., Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct. Targeted Ther., 7 (2022) 99.
|