Volume 13 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Yi Lu, Qiulan Luo, Xiaobin Jia, James P. Tam, Huan Yang, Yuping Shen, Xin Li. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 239-254. doi: 10.1016/j.jpha.2022.12.001
Citation: Yi Lu, Qiulan Luo, Xiaobin Jia, James P. Tam, Huan Yang, Yuping Shen, Xin Li. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 239-254. doi: 10.1016/j.jpha.2022.12.001

Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology

doi: 10.1016/j.jpha.2022.12.001

This work was supported by the National Natural Science Foundation of China (Grant No.: 81873196), Sino-German Center for Research Promotion (Project No.: GZ1505), Chinese Scholarship Council, and Science and Technology Planning Projects of Jiaxing City (Project No.: 2022AY10014).

  • Received Date: Aug. 30, 2022
  • Accepted Date: Dec. 27, 2022
  • Rev Recd Date: Nov. 29, 2022
  • Publish Date: Dec. 30, 2022
  • Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium (EF) and possess excellent therapeutic effects on various diseases. Encouragingly, in 2022, icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma (HCC) by National Medical Products Administration (NMPA) of China. Moreover, recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects. Nonetheless, both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content, poor bioavailability, and unfavorable in vivo delivery efficiency. Recently, various strategies, including enzyme engineering and nanotechnology, have been developed to increase productivity and activity, improve delivery efficiency, and enhance therapeutic effects of epimedium flavonoids. In this review, the structure-activity relationship of epimedium flavonoids is described. Then, enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed. The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized. Finally, the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.
  • loading
  • H. P. Ma, X. R. He, Y. Yang, et al., The genus epimedium: an ethnopharmacological and phytochemical review, J. Ethnopharmacol. 134 (2011) 519-541.
    C. P. Commission, Pharmacopoeia of the People's republic of china. vol. 1. China Medical Science Press, Beijing, 2015.
    X. D. Su, W. Li, J. Y. Ma, et al., Chemical constituents from epimedium koreanum nakai and their chemotaxonomic significance, Nat. Prod. Res. 32 (2018) 2347-2351.
    Y. Shen, M. Wang, Y. Chen, et al., Convenient preparation of sagittatoside b, a rare bioactive secondary flavonol glycoside, by recyclable and integrated biphase enzymatic hydrolysis, Enzym. Microb. Technol. 121 (2019) 51-58.
    T. Cheng, Y. Zhang, T. Zhang, et al., Comparative pharmacokinetics study of icariin and icariside II in rats, Molecules 20 (2015) 21274-21286.
    X. Cao, Q. Luo, F. Song, et al., Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues, Ind. Crop. Prod. 191 (2023), 115986.
    H. Wu, M. Kim, J. Han, Icariin metabolism by human intestinal microflora, Molecules 21 (2016), 1158.
    Y. Li, S. Sun, Q. Chang, et al., A strategy for the improvement of the bioavailability and antiosteoporosis activity of BCS IV flavonoid glycosides through the formulation of their lipophilic aglycone into nanocrystals, Mol. Pharm. 10 (2013) 2534-2542.
    Y. Lu, Y. Gao, H. Yang, et al., Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma, Mil. Med. Res. 2022. https://doi.org/10.1186/s40779-022-00433-9.
    Y. Sun, S. Qin, W. Li, et al., A randomized, double-blinded, phase III study of icaritin versus huachashu as the first-line therapy in biomarker-enriched hbv-related advanced hepatocellular carcinoma with poor conditions: interim analysis result, J. Clin. Oncol. 39 (2021) 4077-4077.
    S. Lu, K. Zou, B. Guo, et al., One-step purification and immobilization of thermostable β-glucosidase on na-y zeolite based on the linker and its application in the efficient production of baohuoside I from icariin, Bioorg. Chem. 121 (2022), 105690.
    F. Liu, B. Wei, L. Cheng, et al., Co-immobilizing two glycosidases based on cross-linked enzyme aggregates to enhance enzymatic properties for achieving high titer icaritin biosynthesis, J. Agric. Food Chem. 70 (2022) 11631-11642.
    X. Jin, Z. H. Zhang, E. Sun, et al., A novel drug-phospholipid complex loaded micelle for baohuoside I enhanced oral absorption: In vivo and in vivo evaluations, Drug Dev. Ind. Pharm. 39 (2013) 1421-1430.
    L. Huang, X. Wang, H. Cao, et al., A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice, Biomaterials 182 (2018) 58-71.
    X. Chen, H. Ji, Q. Zhang, et al., A rapid method for simultaneous determination of 15 flavonoids in epimedium using pressurized liquid extraction and ultra-performance liquid chromatography, J. Pharm. Biomed. Anal. 46 (2008) 226-235.
    J. Tong, C. Liu, B. Wang, Improved synthesis of icaritin and total synthesis of β-anhydroicaritin, Chem. Res. Chin. Univ. 35 (2019) 616-620.
    J. Xie, J. Zhao, N. Zhang, et al., Efficient production of isoquercitin, icariin and icariside II by a novel thermostable α-L-rhamnosidase podorha from paenibacillus odorifer with high α-1, 6-/α-1, 2- glycoside specificity, Enzym. Microb. Technol. 158 (2022), 110039.
    H. Khan, H. Ullah, M. Martorell, et al., Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects, Semin. Cancer Biol. 69 (2021) 200-211.
    J. Zhang, K. Hu, L. Di, et al., Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health, Adv. Drug Deliv. Rev. 178 (2021), 113964.
    J. Guo, H. Zeng, Y. Liu, et al., Multicomponent thermosensitive lipid complexes enhance desmoplastic tumor therapy through boosting anti-angiogenesis and synergistic strategy, Int. J. Pharm. 601 (2021), 120533.
    X. Li, Y. Lu, Y. Hu, A wireless and battery-free DNA hydrogel biosensor for wound infection monitoring, Matter 5 (2022) 2473-2475.
    T. Y. Wang, Q. Li, K. S. Bi, Bioactive flavonoids in medicinal plants: structure, activity and biological fate, Asian J. Pharm. Sci. 13 (2018) 12-23.
    S. Shi, J. Li, X. Zhao, et al., A comprehensive review: biological activity, modification and synthetic methodologies of prenylated flavonoids, Phytochemistry 191 (2021), 112895.
    Y. H. Xi, T. W. Jiang, J. M. Yu, et al., Preliminary studies on the anti-osteoporosis activity of baohuoside I, Biomed. Pharmacother. 115 (2019), 108850.
    H. J. Choi, J. S. Eun, D. K. Kim, et al., Icariside II from epimedium koreanum inhibits hypoxia-inducible factor-1 alpha in human osteosarcoma cells, Eur. J. Pharmacol. 579 (2008) 58-65.
    M. B. Liu, W. Wang, J. M. Gao, et al., Icariside II attenuates cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction in rats via regulating the balance of MMP9/TIMP1, Acta Pharmacol. Sin. 41 (2020) 1547-1556.
    B. F. Guan, X. F. Dai, Q. B. Huang, et al., Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway, Mol. Med. Rep. 22 (2020) 3151-3160.
    L. Yang, C. Peng, J. Xia, et al., Effects of icariside II ameliorates diabetic cardiomyopathy in streptozotocin-induced diabetic rats by activating akt/nos/nf-κb signaling, Mol. Med. Rep. 17 (2018) 4099-4105.
    S. j. Gu, M. Li, Y. m. Yuan, et al., A novel flavonoid derivative of icariside II improves erectile dysfunction in a rat model of cavernous nerve injury, Andrology 9 (2021) 1893-1901.
    L. Yan, Y. Deng, J. Gao, et al., Icariside II effectively reduces spatial learning and memory impairments in Alzheimer's disease model mice targeting beta-amyloid production, Front. Pharmacol. 8 (2017), 106.
    J. Zhou, Y. Deng, F. Li, et al., Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MYD88/NF-кB pathway in rats, Biomed. Pharmacother. 111 (2019) 315-324.
    C. Tian, F. Gao, X. Li, et al., Icariside ii attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-кB and STAT3 in an asthma mouse model, Exp. Mol. Pathol. 113 (2020), 104373.
    Y. Chen, L. N. Zhang, X. Y. Zang, et al., Baohuoside I inhibits tumor angiogenesis in multiple myeloma via the peroxisome proliferator-activated receptor gamma/vascular endothelial growth factor signaling pathway, Front. Pharmacol. 13 (2022), 822082.
    K. S. Lee, H. J. Lee, K. S. Ahn, et al., Cyclooxygenase-2/prostaglandin e-2 pathway mediates icariside II induced apoptosis in human pc-3 prostate cancer cells, Cancer Lett. 280 (2009) 93-100.
    H. M. Yan, J. Song, X. B. Jia, et al., Hyaluronic acid-modified didecyldimethylammonium bromide/d-a-tocopheryl polyethylene glycol succinate mixed micelles for delivery of baohuoside I against non-small cell lung cancer: in vitro and in vivo evaluation, Drug Deliv. 24 (2017) 30-39.
    Y. S. Sun, K. Thakur, F. Hu, et al., Icariside II suppresses cervical cancer cell migration through jnk modulated matrix metalloproteinase-2/9 inhibition in vitro and in vivo, Biomed. Pharmacother. 125 (2020), 110013.
    S. Wang, N. Wang, X. Huang, et al., Baohuoside I suppresses breast cancer metastasis by downregulating the tumor-associated macrophages/cxc motif chemokine ligand 1 pathway, Phytomedicine 78 (2020), 153331.
    F. Ni, H. Tang, C. Wang, et al., Baohuoside I inhibits the proliferation of pancreatic cancer cells via mtor/s6k1-caspases/bcl2/bax apoptotic signaling, Cancer Manag. Res. 11 (2019) 10609-10621.
    Y. Guo, H. Zhu, M. Weng, et al., Baohuoside-1 targeting mtor inducing apoptsis to inhibit hepatocellular carcinoma proliferation, invasion and migration, Biomed. Pharmacother. 128 (2020), 110366.
    Q. Wang, S. Jiang, W. Wang, et al., Effects of baohuoside-I on epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma, Hum. Exp. Toxicol. 40 (2021) 566-576.
    Y. Guo, C. Wang, M. Jiang, et al., Baohuoside I via mtor apoptotic signaling to inhibit glioma cell growth, Cancer Manag. Res. 12 (2020) 11435-11444.
    Y. G. Peng, L. Zhang, Baohuoside-I suppresses cell proliferation and migration by up-regulating mir-144 in melanoma, Pharm. Biol. 56 (2017) 43-50.
    S. Chen, L. Zheng, J. Zhang, et al., A novel bone targeting delivery system carrying phytomolecule icaritin for prevention of steroid-associated osteonecrosis in rats, Bone 106 (2018) 52-60.
    W. Zhang, B. Xing, L. Yang, et al., Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats, Am. J. Chin. Med. 43 (2015) 1083-1097.
    S. Zhu, Z. Wang, Z. Li, et al., Icaritin suppresses multiple myeloma, by inhibiting il-6/jak 2/stat3, Oncotarget 6 (2015) 10460-10472.
    J. Li, P. Liu, R. Zhang, et al., Icaritin induces cell death in activated hepatic stellate cells through mitochondrial activated apoptosis and ameliorates the development of liver fibrosis in rats, J. Ethnopharmacol. 137 (2011) 714-723.
    L. Liu, Z. Zhao, L. Lu, et al., Icariin and icaritin ameliorated hippocampus neuroinflammation via mediating hmgb1 expression in social defeat model in mice, Int. Immunopharm. 75 (2019), 105799.
    H. Wu, X. Liu, Z. Y. Gao, et al., Icaritin provides neuroprotection in Parkinson's disease by attenuating neuroinflammation, oxidative stress, and energy deficiency, Antioxidants 10 (2021), 529.
    X. Chen, L. Song, Y. Hou, et al., Reactive oxygen species induced by icaritin promote DNA strand breaks and apoptosis in human cervical cancer cells, Oncol. Rep. 41 (2019) 765-778.
    L. Yin, X. W. Qi, X. Z. Liu, et al., Icaritin enhances the efficacy of cetuximab against triple-negative breast cancer cells, Oncol. Lett. 19 (2020) 3950-3958.
    F. Sun, I. R. Indran, Z. W. Zhang, et al., A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants, Carcinogenesis 36 (2015) 757-768.
    L. Gao, M. Chen, Y. Ouyang, et al., Icaritin induces ovarian cancer cell apoptosis through activation of p53 and inhibition of akt/mtor pathway, Life Sci. 202 (2018) 188-194.
    X. W. Pan, L. Li, Y. Huang, et al., Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy, Oncol. Rep. 35 (2016) 334-342.
    C. Zhou, Z. Chen, X. Lu, et al., Icaritin activates jnk-dependent mptp necrosis pathway in colorectal cancer cells, Tumor Biol. 37 (2016) 3135-3144.
    Z. Li, X. Meng, L. Jin, Icaritin induces apoptotic and autophagic cell death in human glioblastoma cells, Am. J. Transl. Res. 8 (2016) 4628-4643.
    X. J. Yang, Y. M. Xi, Z. J. Li, Icaritin: a novel natural candidate for hematological malignancies therapy, BioMed Res. Int. 2019 (2019), 4860268.
    Z. Yu, J. Guo, M. Hu, et al., Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma, ACS Nano 14 (2020) 4816-4828.
    Y. H. Tang, Y. F. Li, D. W. Xin, et al., Icariin alleviates osteoarthritis by regulating autophagy of chondrocytes by mediating pi3k/akt/mtor signaling, Bioengineered 12 (2021) 2984-2999.
    N. Liu, T. Zhang, B. R. Cao, et al., Icariin possesses chondroprotective efficacy in a rat model of dexamethasone-induced cartilage injury through the activation of mir-206 targeting of cathepsin k, Int. J. Mol. Med. 41 (2018) 1039-1047.
    X. Meng, H. Pei, C. Lan, Icariin exerts protective effect against myocardial ischemia/reperfusion injury in rats, Cell Biochem. Biophys. 73 (2015) 229-235.
    H. A. Chen, C. M. Chen, S. S. Guan, et al., The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model, Phytomedicine 59 (2019), 152917.
    X. L. Zhang, N. N. Han, G. Q. Li, et al., Local icariin application enhanced periodontal tissue regeneration and relieved local inflammation in a minipig model of periodontitis, Int. J. Oral Sci. 10 (2018), 19.
    J. W. Wang, G. S. Zhu, X. Y. Wang, et al., An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury, J. Pharm. Pharmacol. 72 (2020) 1152-1164.
    X. Zheng, D. H. Li, J. X. Li, et al., Optimization of the process for purifying icariin from herba epimedii by macroporous resin and the regulatory role of icariin in the tumor immune microenvironment, Biomed. Pharmacother. 118 (2019), 109275.
    L. Song, X. Chen, L. Mi, et al., Icariin-induced inhibition of SIRT6/NF-к B triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer, Cancer Sci. 111 (2020) 4242-4256.
    N. A. Alhakamy, U. A Fahmy, S. M. Badr-Eldin, et al., Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells, Pharmaceutics 12 (2020), 346.
    C. Y. Li, S. Q. Yang, H. Q. Ma, et al., Influence of icariin on inflammation, apoptosis, invasion, and tumor immunity in cervical cancer by reducing the tlr4/myd88/nf-kappa b and wnt/beta-catenin pathways, Cancer Cell Int. 21 (2021), 206.
    J. Ding, Y. Tang, Z. Tang, et al., Icariin improves the sexual function of male mice through the pi 3k/akt/enos/no signalling pathway, Andrologia 50 (2018), e12802.
    C. X. Sheng, P. P. Xu, K. X. Zhou, et al., Icariin attenuates synaptic and cognitive deficits in an a ss(1-42)-induced rat model of alzheimer's disease, BioMed Res. Int. 2017 (2017), 7464872.
    Z. Wang, H. Zhang, L. L. Dai, et al., Arsenic trioxide and icariin show synergistic anti-leukemic activity, Cell Biochem. Biophys. 73 (2015) 213-219.
    R. Shen, W. J. Deng, C. Li, et al., A natural flavonoid glucoside icariin inhibits th1 and th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis, Int. Immunopharm. 24 (2015) 224-231.
    W. Xiong, H. Ma, Z. Zhang, et al., The protective effect of icariin and phosphorylated icariin against lps-induced intestinal goblet cell dysfunction, Innate Immun. 26 (2020) 97-106.
    Y. Xie, L. Xie, A. Chen, et al., Anti-hiv/siv activity of icariin and its metabolite anhydroicaritin mainly involve reverse transcriptase, Eur. J. Pharmacol. 884 (2020), 173327.
    X. J. Chen, Z. H. Tang, X. W. Li, et al., Chemical constituents, quality control, and bioactivity of epimedii folium (yinyanghuo), Am. J. Chin. Med. 43 (2015) 783-834.
    Z. S. Xu, L. L. Huang, T. T. Sun, et al., Comparison of the total flavonoids content in epimedii folium processed by monlton suet from different growing areas and different positions of sheep or goat, Chin. J. Exp. Tradit. Med. Formulae 23 (2012) 149-152.
    X. B. Jia, X. Y. Jin, J. J. Wang, et al., Comparison of the content of main component in epimedium koreanum decoction pieces from different manufactories, Chin. Pharm. 21 (2010) 1006-1008.
    M. Dong, S. X. Wu, H. J. Xu, et al., Fbs-derived exosomes as a natural nano-scale carrier for icariin promote osteoblast proliferation, Front. Bioeng. Biotechnol. 9 (2021), 615920.
    Y. Liu, H. Yang, J. Xiong, et al., Icariin as an emerging candidate drug for anticancer treatment: current status and perspective, Biomed. Pharmacother. 157 (2023), 113991.
    Y. K. Zhai, B. F. Ge, K. M. Chen, et al., Comparative study on the osteogenic differentiation of rat bone marrow stromal cells effected by icariin and icariside II, J. Chin. Med. Mater. 33 (2010) 1896-1900.
    Z. Y. Jian, G. F. Xu, H. Z. Chen, et al., Study on the differences of major pharmaceutical ingredients in different parts and processed medicinal material of epimedium brevicornu maxim in taihang mountain, Nutr. Hosp. 32 (2015) 913-917.
    Y. Chen, J. Y. Wang, X. B. Jia, et al., Role of intestinal hydrolase in the absorption of prenylated flavonoids present in yinyanghuo, Molecules 16 (2011) 1336-1348.
    X. Wang, J. J. Li, L. F. Liu, et al., Pharmacological mechanism and therapeutic efficacy of icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis, BMC Complementary Med. Ther. 22 (2022), 18.
    R. Szabo, C. P. Racz, F. V. Dulf, Bioavailability improvement strategies for icariin and its derivates: a review, Int. J. Mol. Sci. 23 (2022), 7519.
    C. L. Feng, Y. Lu, Y. Y. Zhou, et al., Convenient preparation of 2''-o-rhamnosyl icariside II, a rare secondary flavonol glycoside, by recyclable and integrated biphase enzymatic hydrolysis, Phcog. Mag. 15 (2019) 147-155.
    J. Xie, H. Xu, J. Jiang, et al., Characterization of a novel thermostable glucose-tolerant gh1 β-glucosidase from the hyperthermophile ignisphaera aggregans and its application in the efficient production of baohuoside i from icariin and total epimedium flavonoids, Bioorg. Chem. 104 (2020), 104296.
    T. Cheng, J. Yang, T. Zhang, et al., Optimized biotransformation of icariin into icariside II by β-glucosidase from trichoderma viride using central composite design method, BioMed Res. Int. 2016 (2016), 5936947.
    Y. P. Shen, M. Wang, J. W. Zhou, et al., Eco-efficient biphasic enzymatic hydrolysis for the green production of rare baohuoside I, Enzym. Microb. Technol. 131 (2019), 109431.
    Q. Li, L. Ge, D. Zheng, et al., Screening and characterization of a GH78 α-L-rhamnosidase from aspergillus terreus and its application in the bioconversion of icariin to icaritin with recombinant β-glucosidase, Enzym. Microb. Technol. 153 (2022), 109940.
    Q. Xia, D. Xu, Z. Huang, et al., Preparation of icariside ii from icariin by enzymatic hydrolysis method, Fitoterapia 81 (2010) 437-442.
    Q. Yang, L. Wang, L. Zhang, et al., Baohuoside I production through enzyme hydrolysis and parameter optimization by using response surface and subset selection, J. Mol. Catal. B Enzym. 90 (2013) 132-138.
    J. S. Park, H. Y. Park, H. S. Rho, et al., Statistically designed enzymatic hydrolysis for optimized production of icariside II as a novel melanogenesis inhibitor, J. Microbiol. Biotechnol. 18 (2008) 110-117.
    Y. Shen, H. Wang, Y. Lu, et al., Construction of a novel catalysis system for clean and efficient preparation of baohuoside I from icariin based on biphase enzymatic hydrolysis, J. Clean. Prod. 170 (2018) 727-734.
    L. Cui, Z. Zhang, E. Sun, et al., Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin, J. Nat. Sci. Biol. Med. 4 (2013) 201-206.
    X. Jin, Z. Zhang, E. Sun, et al., Statistically designed enzymatic hydrolysis of an icariin/β-cyclodextrin inclusion complex optimized for production of icaritin, Acta Pharm. Sin. B 2 (2012) 83-89.
    X. Jin, Z. H. Zhang, E. Sun, et al., β-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis, Phcog. Mag. 9 (2013) S11-S18.
    L. Cheng, H. Zhang, H. Cui, et al., A novel α-L-rhamnosidase renders efficient and clean production of icaritin, J. Clean. Prod. 341 (2022), 130903.
    C. Y. Liu, R. Y. Li, J. Peng, et al., Enhanced hydrolysis and antitumor efficacy of epimedium flavonoids mediated by immobilized snailase on silica, Process Biochem. 86 (2019) 80-88.
    Y. Dong, S. Zhang, C. Lu, et al., Immobilization of thermostable β-glucosidase and α-l-rhamnosidase from dictyoglomus thermophilum dsm3960 and their cooperated biotransformation of total flavonoids extract from epimedium into icaritin, Catal. Lett. 151 (2021) 2950-2963.
    S. Zhang, J. Luo, Y. Dong, et al., Biotransformation of the total flavonoid extract of epimedium into icaritin by two thermostable glycosidases from dictyoglomus thermophilum dsm3960, Process Biochem. 105 (2021) 8-18.
    Y. Lyu, W. Zeng, G. Du, et al., Efficient bioconversion of epimedin C to icariin by a glycosidase from aspergillus nidulans, Bioresour. Technol. 289 (2019), 121612.
    R. Casella, D. Williams, S. Jambhekar, Solid-state β-cyclodextrin complexes containing indomethacin, ammonia and water. Ii. Solubility studies, Int. J. Pharm. 165 (1998) 15-22.
    S. Rawat, S. K. Jain, Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes, Eur. J. Pharm. Biopharm. 57 (2004) 263-267.
    H. R. Xi, H. P. Ma, K. M. Chen, et al., Preparation and characterization of icariin nanosuspension and lyophilized powder, China J. Chin. Mater. Med. 45 (2020) 4902-4908.
    X. Li, L. Hetjens, N. Wolter, et al., Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin, J. Adv. Res. 2022. https://doi.org/10.1016/j.jare.2022.02.014.
    X. Li, L. Kong, W. Hu, et al., Safe and efficient 2d molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: a preclinical study, J. Adv. Res. 37 (2022) 255-266.
    X. Li, H. Sun, H. Li, et al., Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors, Adv. Funct. Mater. 31 (2021), 2100227.
    R. Saka, N. Chella, Nanotechnology for delivery of natural therapeutic substances: a review, Environ. Chem. Lett. 19 (2021) 1097-1106.
    J. Nicolas, S. Mura, D. Brambilla, et al., Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev. 42 (2013) 1147-1235.
    G. Bozzuto, A. Molinari, Liposomes as nanomedical devices, Int. J. Nanomed. 10 (2015) 975-999.
    K. Tai, X. He, X. Yuan, et al., A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants, Colloids Surf., A 518 (2017) 218-231.
    J. Song, H. Huang, Z. Xia, et al., Tpgs/phospholipids mixed micelles for delivery of icariside ii to multidrug-resistant breast cancer, Integr. Cancer Ther. 15 (2016) 390-399.
    C. F. Zhao, Z. H. Li, S. J. Li, et al., Plga scaffold carrying icariin to inhibit the progression of osteoarthritis in rabbits, R. Soc. Open Sci. 6 (2019), 181877.
    H. Yan, Z. Zhang, X. Jia, et al., D-α-tocopheryl polyethylene glycol succinate/solutol hs 15 mixed micelles for the delivery of baohuoside i against non-small-cell lung cancer: optimization and in vitro, in vivo evaluation, Int. J. Nanomed. 11 (2016) 4563-4571.
    C. Tang, K. Meng, X. Chen, et al., Preparation, characterization, and in vivo evaluation of amorphous icaritin nanoparticles prepared by a reactive precipitation technique, Molecules 26 (2021), 2913.
    C. Tang, X. Chen, H. Yao, et al., Enhanced oral absorption of icaritin by using mixed polymeric micelles prepared with a creative acid-base shift method, Molecules 26 (2021), 3450.
    U. Kedar, P. Phutane, S. Shidhaye, et al., Advances in polymeric micelles for drug delivery and tumor targeting, Nanomed. Nanotechnol. Biol. Med. 6 (2010) 714-729.
    T. Toniazzo, I. F. Berbel, S. Cho, et al., Β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: physico-chemical stability and feasibility of application in yogurt, LWT--Food Sci. Technol. 59 (2014) 1265-1273.
    S. Xia, S. Xu, Ferrous sulfate liposomes: preparation, stability and application in fluid milk, Food Res. Int. 38 (2005) 289-296.
    L. Tu, Z. Liao, Z. Luo, et al., Ultrasound-controlled drug release and drug activation for cancer therapy, Explorations 1 (2021), 20210023.
    J. Hou, J. Wang, E. Sun, et al., Preparation and evaluation of icariside II-loaded binary mixed micelles using solutol hs15 and pluronic f127 as carriers, Drug Deliv. 23 (2016) 3248-3256.
    A. Dahan, A. Beig, D. Lindley, et al., The solubility-permeability interplay and oral drug formulation design: two heads are better than one, Adv. Drug Deliv. Rev. 101 (2016) 99-107.
    X. Jin, Z. H. Zhang, E. Sun, et al., Preparation of a nanoscale baohuoside I-phospholipid complex and determination of its absorption: in vivo and in vitro evaluations, Int. J. Nanomed. 7 (2012) 4907-4916.
    J. W. Yoo, E. Chambers, S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects, Curr. Pharmaceut. Des. 16 (2010) 2298-2307.
    Y. Wei, L. Quan, C. Zhou, et al., Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application, Nanomedicine 13 (2018) 1495-1512.
    M. J. Mitchell, M. M. Billingsley, R. M. Haley, et al., Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov. 20 (2021) 101-124.
    S. Y. Fam, C. F. Chee, C. Y. Yong, et al., Stealth coating of nanoparticles in drug-delivery systems, Nanomaterials 10 (2020), 787.
    X. Li, L. X. Xing, K. L. Zheng, et al., Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy, ACS Appl. Mater. Interfaces 9 (2017) 5817-5827.
    X. Li, Z. G. Xiong, X. Y. Xu, et al., Tc-99m-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted spect/ct dual-mode imaging of tumors, ACS Appl. Mater. Interfaces 8 (2016) 19883-19891.
    J. S. Brenner, S. MitragotriV. R. Muzykantov, Red blood cell hitchhiking: a novel approach for vascular delivery of nanocarriers, Annu. Rev. Biomed. Eng. 23 (2021) 225-248.
    D. Kalyane, N. Raval, R. Maheshwari, et al., Employment of enhanced permeability and retention effect (epr): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer, Mater. Sci. Eng., C 98 (2019) 1252-1276.
    H. M. Yan, J. Song, Z. H. Zhang, et al., Optimization and anticancer activity in vitro and in vivo of baohuoside I incorporated into mixed micelles based on lecithin and solutol hs 15, Drug Deliv. 23 (2016) 2911-2918.
    V. P. Chauhan, R. K. Jain, Strategies for advancing cancer nanomedicine, Nat. Mater. 12 (2013) 958-962.
    X. Li, M. S. Yang, X. Shi, et al., Effect of the intramolecular hydrogen bond on the spectral and optical properties in chitosan oligosaccharide, Phys. Met. 69 (2015) 237-242.
    X. Li, M. S. Yang, Z. P. Ye, et al., Dft research on the ir spectrum of glycine tryptophan oligopeptides chain, Acta Phys. Sin. 62 (2013), 156103.
    Z. Zhao, C. Chen, C. Xie, et al., Design, synthesis and evaluation of liposomes modified with dendritic aspartic acid for bone-specific targeting, Chem. Phys. Lipids 226 (2020), 104832.
    Y. L. Su, S. H. Hu, Functional nanoparticles for tumor penetration of therapeutics, Pharmaceutics 10 (2018), 193.
    L. Tang, N. P. Gabrielson, F. M. Uckun, et al., Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates, Mol. Pharm. 10 (2013) 883-892.
    J. Ding, J. Chen, L. Gao, et al., Engineered nanomedicines with enhanced tumor penetration, Nano Today 29 (2019), 100800.
    L. Tang, X. Yang, Q. Yin, et al., Investigating the optimal size of anticancer nanomedicine, Proc. Natl. Acad. Sci. USA 111 (2014) 15344-15349.
    Q. Sun, T. Ojha, F. Kiessling, et al., Enhancing tumor penetration of nanomedicines, Biomacromolecules 18 (2017) 1449-1459.
    M. Bartneck, H. A. Keul, S. Singh, et al., Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry, ACS Nano 4 (2010) 3073-3086.
    L. Jia, X. Li, H. Liu, et al., Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and ph-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles, Nano Today 36 (2021), 101022.
    E. Ruoslahti, Specialization of tumour vasculature, Nat. Rev. Cancer 2 (2002) 83-90.
    Y. Lu, A. A. Aimetti, R. Langer, et al., Bioresponsive materials, Nat. Rev. Mater. 2 (2016), 16075.
    X. Li, Z. J. Ouyang, H. L. Li, et al., Dendrimer-decorated nanogels: efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma, Bioact. Mater. 6 (2021) 3244-3253.
    X. Xue, X. J. Liang, Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology, Chin. J. Cancer 31 (2012) 100-109.
    C. Yang, T. Wu, Y. Qi, et al., Recent advances in the application of vitamin e tpgs for drug delivery, Theranostics 8 (2018) 464-485.
    X. Li, S. Y. Lu, Z. G. Xiong, et al., Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis, Adv. Sci. 6 (2019), 1901800.
    X. Li, L. X. Xing, Y. Hu, et al., An rgd-modified hollow silica@au core/shell nanoplatform for tumor combination therapy, Acta Biomater. 62 (2017) 273-283.
    L. Gao, L. Feng, D. F. Sauer, et al., Engineered living hydrogels for robust biocatalysis in pure organic solvents, Cell Rep. Phys. Sci. 3 (2022) 101054.
    F. Xu, Q. Wu, L. Li, et al., Icariside II: anticancer potential and molecular targets in solid cancers, Front. Pharmacol. 12 (2021), 663776.
    C. Zhang, X. Sui, Y. Jiang, et al., Antitumor effects of icaritin and the molecular mechanisms, Discov. Med. 29 (2020) 5-16.
    S. Sindhwani, W. C. W. Chan, Nanotechnology for modern medicine: next step towards clinical translation, J. Intern. Med. 290 (2021) 486-498.
    I. de Lazaro, D. J. Mooney, Obstacles and opportunities in a forward vision for cancer nanomedicine, Nat. Mater. 20 (2021) 1469-1479.
    X. Li, H. L. Li, C. C. Zhang, et al., Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy, Bioact. Mater. 6 (2021) 3473-3484.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (456) PDF downloads(68) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint