Online First

Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes/issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Investigation of oligomeric proanthocyanidins extracted from Rhodiolae Crenulatae Radix et Rhizomes using deep eutectic solvents and identified via data-dependentacquisition mass-spectroscopy
Li Jia, Liming Wang, Xiaoxiao Zhang, Qingrui Zhang, Peng Lei, Yanxu Chang, Lifeng Han, Xin Chai, Wenzhi Yang, Yuefei Wang, Miaomiao Jiang
, Available online  , doi: 10.1016/j.jpha.2024.101002
In this study, 34 deep eutectic solvents were successfully prepared for the extraction of proanthocyanidin from Rhodiolae Crenulatae Radix et Rhizomes. The extraction process was optimized using single factor exploration and Box-Behnken design- response surface analysis. The extraction rate was significantly improved when the molar ratio of choline chloride to 1,3-propanediol was 1:3.5 and the water content was 30% (V/V) in deep eutectic solvents. AB-8 macroporous resin and ethyl acetate were used for separation and refining, and the oligomer-rich proanthocyanidin components were eventually obtained. The ultraviolet (UV) and infrared spectrometer (IR) spectra showed that the proanthocyanidins were mainly composed of catechin and epicatechin. To further clarify the chemical composition of proanthocyanidin, an ion scan list containing 156 proanthocyanidins precursors was obtained by constructing a proanthocyanidins structural library and mass defect filtering algorithm, combined with the Full mass spectrometry (MS)/dd-MS2 scan mode that turns on the “if idle pick others” function. By using Ultra high performance liquid chromatography & High-resolution mass spectrometer (UHPLC/Orbitrap MS), the analysis used both targeted and non- targeted methods to detect proanthocyanidins. Finally, 50 oligomeric proanthocyanidin compounds were identified, including 7 monomers, 22 dimers, 20 trimers, and 1 tetramer, most of which were procyanidins of proanthocyanidins (84%), and a small amount of prodelphinidin (14%) and other types of proanthocyanidins (2%), which enabled the systematic characterization of proanthocyanidin components from Rhodiolae Crenulatae Radix et Rhizomes. Meanwhile, the comparison with the grape seeds oligomeric proanthocyanidins standard (United States Pharmacopoeia) revealed that the proanthocyanidins in Rhodiolae Crenulatae Radix et Rhizomes were more abundant, suggesting that the proanthocyanidins in Rhodiolae Crenulatae Radix et Rhizomes has promising applications.
Circulating Memory T Cells and TCF1+ T Cells Aid in Diagnosis and Monitor Disease Activity in Vitiligo
Xinju Wang, Jianru Chen, Wei Wu, Jinrong Fan, Luling Huang, Weiwei Sun, Kaiqiao He, Shuli Li, Chunying Li
, Available online  , doi: 10.1016/j.jpha.2024.100998
Vitiligo is an immune memory skin disease. T-cell factor 1 (TCF1) is essential for maintaining the maintenance of the memory T-cell pool. There is an urgent need to investigate the characteristics of peripheral memory T-cell profile and TCF1+ T-cell frequencies in patients with vitiligo patients. In this study, 31 patients with active vitiligo (AV), 22 with stable vitiligo (SV), and 30 healthy controls (HCs) were included. We measured circulating memory and TCF1+ T-cell frequencies using by flow cytometry. The Spearman’s rank test was used to evaluate the correlation correlations between cell frequencies and disease characteristics. Receiver operating characteristic curves (ROC) were constructed to investigate the discriminative power of the cell subpopulations. Circulating CD4+ and CD8+ terminally differentiated effector memory T-cell (TEMRA) frequencies were significantly higher in the AV group than in compared to HCs (P < 0.05). TCF1+ T-cell subpopulations were widespread increased in patients with vitiligo patients (P < 0.05). After adjusting adjustment for potential confounders, CD8+ and CD4+ central memory (TCM) cells, and CD8+ TEMRA were correlated with disease activity (P < 0.05). The combined diagnostic value of the four (naïve naive, effector memory, TCM, and TEMRA) CD8+TCF1+ T-cell subsets was relatively high (area under the ROC curve [AUC]AUC = 0.804, sensitivity = 71.70%, specificity = 83.34%), and the CD8+ T-cell subsets combination performed well in discriminating disease activity (AUC = 0.849, sensitivity = 70.97%, specificity = 90.91%). We demonstrated an altered circulating memory T-cell profile and increased TCF1+ T-cell percentage percentages in patients with vitiligo patients. T-cell subpopulations had a strong value values for vitiligo diagnosis and activity evaluation. This evidence presents a potential new pharmacological target for inhibiting to inhibit the autoimmunity that leads leading to vitiligo disease activity.
Optical biosensing of monkeypox virus using novel recombinant silica-binding proteins for site-directed antibody immobilization
Xixi Song, Ying Tao, Sumin Bian, Mohamad Sawan
, Available online  , doi: 10.1016/j.jpha.2024.100995
The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks. Therefore, we proposed a silica-binding protein featuring core functional domains (cSP). It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments for effective antibody capture. This innovation facilitates precise site-directed immobilization of antibodies onto silica surfaces. We applied cSP to silica-coated optical fibers, creating a fiber-optic biolayer interferometer (FO-BLI) biosensor capable of monitoring the Monkeypox Virus (MPXV) Protein A29L in spiked clinical samples to rapidly detect the MPXV. The cSP-based FO-BLI biosensor for MPXV demonstrated a limit of detection (LOD) of 0.62 ng/mL in buffer, comparable to the 0.52 ng/mL LOD achieved using a conventional streptavidin-based FO-BLI biosensor. Furthermore, it achieved LODs of 0.77 ng/mL in spiked serum and 0.80 ng/mL in spiked saliva, exhibiting no cross-reactivity with other viral antigens. The MPXV detection process was completed within 14 min. We further proposed a cSP-based multi-virus biosensor strategy capable of detecting various pandemic strains, such as MPXV, the latest coronavirus disease (COVID) variants, and influenza A protein, to extend its versatility. The proposed cSP-modified FO-BLI biosensor has a high potential for rapidly and accurately detecting MPXV antigens, making valuable contributions to epidemiological studies.
miR-135b: an emerging player in cardio-cerebrovascular diseases
Yingchun Shao, Jiazhen Xu, Wujun Chen, Minglu Hao, Xinlin Liu, Renshuai Zhang, Yanhong Wang, Yinying Dong
, Available online  , doi: 10.1016/j.jpha.2024.100997
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches
Ravi Maharjan, Ki Hyun Kim, Kyeong Lee, Hyo-Kyung Han, Seong Hoon Jeong
, Available online  , doi: 10.1016/j.jpha.2024.100996
To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA - lipid nanoparticles (mRNA-LNP). Different mRNA - LNP formulations (n = 24) were developed using an I - optimal design, where machine learning tools (XGBoost/Bayesian optimization and self - validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes. The critical responses like particle size (PS), polydispersity index (PDI), Zeta potential, pKa, heat trend cycle, encapsulation efficiency (EE), recovery ratio, and encapsulated mRNA were evaluated. Overall prediction of SVEM (> 97%) was comparably better than that of XGBoost/Bayesian optimization (> 94%). Moreover, in actual experimental outcomes, SVEM prediction is close to the actual data as confirmed by the experimental PS (94∼96 nm) is close to the predicted one (95~97 nm). The other parameters including PDI and EE were also close to the actual experimental data.
Software-aided efficient identification of the components of compound formulae and their metabolites in rats by UHPLC/IM-QTOF-MS and an in-house high-definition MS2 library: Sishen Formula as a case
Lili Hong, Wei Wang, Shiyu Wang, Wandi Hu, Yuyang Sha, Xiaoyan Xu, Xiaoying Wang, Kefeng Li, Hongda Wang, Xiumei Gao, Dean Guo, Wenzhi Yang
, Available online  , doi: 10.1016/j.jpha.2024.100994
Identifying the compound formulae-related xenobiotics in bio-samples is full of challenges. Conventional strategies always exhibit the insufficiencies in overall coverage, analytical efficiency, and degree of automation, and the results highly rely on the personal knowledge and experience. The goal of this work was to establish a software-aided approach, by integrating ultra-high performance liquid chromatography/ion-mobility quadrupole time-of-flight mass spectrometry and in-house high-definition MS2 library, to enhance the identification of prototypes and metabolites of the compound formulae in vivo, taking Sishen formula (SSF) as a template. Seven different MS2 acquisition methods were compared, which demonstrated the potency of a hybrid scan approach (namely HDDIDDA) in the identification precision, MS1 coverage, and MS2 spectra quality. The HDDIDDA data for 55 reference compounds, four component drugs, and SSF, together with the rat bio-samples (e.g., plasma, urine, feces, liver, and kidney), were acquired. Based on the UNIFITM platform (Waters), the efficient data processing workflows were established by combining mass defect filtering (MDF)-induced classification, diagnostic product ions (DPIs), and neutral loss filtering (NLF)-dominated structural confirmation. The high-definition MS2 spectral libraries, dubbed in vitro-SSF and in vivo-SSF, were elaborated, enabling the efficient and automatic identification of SSF-associated xenobiotics in diverse rat bio-samples. Consequently, 118 prototypes and 206 metabolites of SSF were identified, with the identification rate reaching 80.51% and 79.61%, respectively. The metabolic pathways mainly involved the oxidation, reduction, hydrolysis, sulfation, methylation, demethylation, acetylation, glucuronidation, and the combined reactions. Conclusively, the proposed strategy can drive the identification of compound formulae-related xenobiotics in vivo in an intelligent manner.
“Small is beautiful”-examining reliable determination of low-abundant therapeutic antibody glycovariants
Katharina Böttinger, Christof Regl, Veronika Schäpertöns, Erdmann Rapp, Therese Wohlschlager, Christian G. Huber
, Available online  , doi: 10.1016/j.jpha.2024.100982
Glycans associated with biopharmaceutical drugs play crucial roles in drug safety and efficacy, and therefore, their reliable detection and quantification is essential. Our study introduces a multi-level quantification approach for glycosylation analysis in monoclonal antibodies, focusing on minor abundant glycovariants. Mass spectrometric data is evaluated mainly employing open-source software tools. Released N-glycan and glycopeptide data form the basis for integrating information across different structural levels up to intact glycoproteins. Comprehensive comparison showed that indeed, variations across structural levels were observed especially for minor abundant species. Utilizing MoFi (short for modification finder), a tool for annotating mass spectra of intact proteins, we quantify isobaric glycosylation variants at the intact protein level. Our workflow's utility is demonstrated on NISTmAb, rituximab and adalimumab, profiling their minor abundant variants for the first time across diverse structural levels. This study enhances understanding and accessibility in glycosylation analysis, spotlighting minor abundant glycovariants in therapeutic antibodies.
Increasing the tumour targeting of antitumour drugs through anlotinib-mediated modulation of the extracellular matrix and the RhoA/ROCK signalling pathway
Xuedan Han, Jialei Liu, Yidong Zhang, Eric Tse, Qiyi Yu, Yu Lu, Yi Ma, Lufeng Zheng
, Available online  , doi: 10.1016/j.jpha.2024.100984
Anlotinib has strong antiangiogenic effects and leads to vessel normalization. However, the "window period" characteristic in regulating vessel normalization by anlotinib cannot fully explain the long-term survival benefits achieved through combining it with other drugs. In this study, through RNA sequencing and label-free quantitative proteomics analysis, we discovered that anlotinib regulated the expression of components of the extracellular matrix (ECM), leading to a significant reduction in ECM stiffness. Our bioinformatic analysis revealed a potential positive relationship between the ECM pathway and gefitinib resistance, poor treatment outcomes for programmed death 1 (PD-1) targeting, and unfavourable prognosis following chemotherapy in lung cancer patients. We administered anlotinib in combination with these antitumour drugs and visualized their distribution using fluorescent labelling in various tumour types. Notably, our results demonstrated that anlotinib prolonged the retention time and distribution of antitumour drugs at the tumour site. Moreover, the combination therapy induced notable loosening of the tumour tissue structure. This reduction was associated with decreased interstitial fluid pressure and tumour solid pressure. Additionally, we observed that anlotinib effectively suppressed the RhoA/ROCK signalling pathway. These findings suggest that, in addition to its antiangiogenic and vessel normalization effects, anlotinib can increase the distribution and retention of antitumour drugs in tumours by modulating ECM expression and physical properties through the RhoA/ROCK signalling pathway. These valuable insights contribute to the development of combination therapies aimed at improving tumour targeting in cancer treatment.
Advances in surface plasmon resonance for analyzing active components in traditional Chinese medicine
XIE Jing, LI Xian-deng, LI Mi, ZHU Hong-yan, CAO Yan, ZHANG Jian, XU A-jing
, Available online  , doi: 10.1016/j.jpha.2024.100983
The surface plasmon resonance (SPR) biosensor technology is a novel optical analysis method for studying intermolecular interactions. Owing to in-depth research on Traditional Chinese Medicine (TCM) in recent years, comprehensive and specific identification of components and target interactions have become key yet difficult tasks. SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity, strong exclusivity, large flux, and real-time monitoring capabilities. This review sought to briefly introduce the active components of TCM and the principle of SPR, and provide historical and new insights into the application of SPR in the analysis of the active components of TCM.
Dual-targeted halofuginone hydrobromide nanocomplexes for promotion of macrophage repolarization and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes in adjuvant-induced arthritis in rats
Junping Zhu, Ye Lin, Gejing Li, Yini He, Zhaoli Su, Yuanyuan Tang, Ye Zhang, Qian Xu, Zhongliu Yao, Hua Zhou, Bin Liu, Xiong Cai
, Available online  , doi: 10.1016/j.jpha.2024.100981
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes. Halofuginone hydrobromide (HF), an herbal active ingredient, has demonstrated pharmacological effects of both anti-inflammation and inhibition of synovial hyperplasia proliferation. However, HF's medical efficacy is limited due to its poor water solubility, short half-life, and non-target toxicity. In the current study, by using the advantages of nanotechnology, we presented a novel dual-targeted nanocomplex, termed HA-M@P@HF NPs, which consisted of a hyaluronic acid (HA)-modified hybrid membrane (M)-camouflaged poly lactic-co-glycolic acid (PLGA) nanosystem for HF delivery. These nanocomplexes not only overcame the limitations of HF but also achieved simultaneous targeting of inflammatory macrophages and human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA). In vivo experiments demonstrated that these nanocomplexes effectively suppressed immune-mediated inflammation and synovial hyperplasia, safeguarding against bone destruction in rats with adjuvant-induced arthritis (AIA). Remarkable anti-arthritic effects of these nanocomplexes were accomplished through promoting repolarization of M1-to-M2 macrophages and apoptosis of HFLS-RA, thereby offering a promising therapeutic strategy for RA.
Targeting NTCP for liver disease treatment: A promising strategy
Xin Tan, , Yu Xiang, Jianyou Shi, Lu Chen, Dongke Yu
, Available online  , doi: 10.1016/j.jpha.2024.100979
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Emerging role of Jumonji domain-containing protein D3 (JMJD3) in inflammatory diseases
Xiang Li, Ru-Yi Chen, Jin-Jin Shi, Chang-Yun Li, Yan-Jun Liu, Chang Gao, Ming-Rong Gao, Shun Zhang, Jian-Fei Lu, Jia-Feng Cao, Guan-Jun Yang, Jiong Chen
, Available online  , doi: 10.1016/j.jpha.2024.100978
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri- 6 methylated groups from lysine 27 on histone (H3K27me2/3). The erasure of these 7 marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3’s role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC
Feifei Li, Youyang Shi, Mei Ma, Xiaojuan Yang, Xiaosong Chen, Ying Xie, Sheng Liu
, Available online  , doi: 10.1016/j.jpha.2024.100977
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of “strengthening body and eliminating toxin”, exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible SH2 containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Hepatic PPP1R3G alleviates obesity and liver steatosis by affecting gut microbiota and bile acid metabolism
Chu Zhang a, Gui Wang, Xin Yin, Lingshan Gou, Mengyuan Guo, Feng Suo, Tao Zhuang, Zhenya Yuan, Yanan Liu, Maosheng Gu, Ruiqin Yao
, Available online  , doi: 10.1016/j.jpha.2024.100976
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in highbody mass index and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight and fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholate (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase and sterol-12α-hydroxylase, and concurrently upregulated oxysterol 7-α hydroxylase and Takeda G protein-coupled receptor 5 expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiotaBA axis, which may serve as potential therapeutic targets for obesity-related disorders.
Dissection of triple-negative breast cancer microenvironment and identification of potential therapeutic drugs using single-cell RNA sequencing analysis
Weilun Cheng, Wanqi Mi, Shiyuan Wang, Xinran Wang, Hui Jiang, Jing Chen, Kaiyue Yang, Wenqi Jiang, Jun Ye, Baoliang Guo, Yunpeng Zhang
, Available online  , doi: 10.1016/j.jpha.2024.100975
Breast cancer remains a leading cause of mortality in women worldwide. Triplenegative breast cancer (TNBC) is a particularly aggressive subtype characterized by rapid progression, poor prognosis, and lack of clear therapeutic targets. In the clinic, delineation of tumor heterogeneity and development of effective drugs continue to pose considerable challenges. Within the scope of our study, high heterogeneity inherent to breast cancer was uncovered based on the landscape constructed from both tumor and healthy breast tissue samples. Notably, TNBC exhibited significant specificity regarding cell proliferation, differentiation, and disease progression. Significant associations between tumor grade, prognosis, and TNBC oncogenes were established via pseudotime trajectory analysis. Consequently, we further performed comprehensive characterization of the TNBC microenvironment. A crucial epithelial subcluster, E8, was identified as highly malignant and strongly associated with tumor cell proliferation in TNBC. Additionally, epithelial-mesenchymal transition-associated fibroblast and M2 macrophage subclusters exerted an influence on E8 through cellular interactions, contributing to tumor growth. Characteristic genes in these three cluster cells could therefore serve as potential therapeutic targets for TNBC. The collective findings provided valuable insights that assisted in the screening of a series of therapeutic drugs, such as pelitinib. We further confirmed the anti-cancer effect of pelitinib in an orthotopic 4T1 tumor-bearing mouse model. Overall, our study sheds light on the unique characteristics of TNBC at single-cell resolution and the crucial cell types associated with tumor cell proliferation that may serve as potent tools in the development of effective anti-cancer drugs.
Fangchinoline induces antiviral response by suppressing STING degradation
Jinyong Wang, Fang Xie, Xin Jia, Xuejiao Wang, Lingdong Kong, Yiying Li, Xue Liang, Meiqi Zhang, Yuting He, Wandi Feng, Tong Luo, Yao Wang, Anlong Xu
, Available online  , doi: 10.1016/j.jpha.2024.100972
The stimulator of interferon genes (STING), an integral adaptor protein in the DNA-sensing pathway, plays a pivotal role in the innate immune response against infections. Additionally, it presents a valuable therapeutic target for infectious diseases and cancer. We observed that fangchinoline (Fan), a bis-benzylisoquinoline alkaloid, effectively impedes the replication of vesicular stomatitis virus (VSV), encephalomyocarditis virus (EMCV), influenza A virus (H1N1 PR8), and herpes simplex virus-1 (HSV-1) in vitro. Fan treatment significantly reduced the viral load, attenuated tissue inflammation, and improved survival in a viral sepsis mouse model. Mechanistically, Fan activates the antiviral response in a STING-dependent manner, leading to increased expression of interferon (IFN) and interferon-stimulated genes (ISGs) for potent antiviral effects in vivo and in vitro. Notably, Fan interacts with STING, preventing its degradation and thereby extending the activation of IFN-based antiviral responses. Collectively, our findings highlight the potential of Fan, which elicits antiviral immunity by suppressing STING degradation, as a promising candidate for antiviral therapy.
Advancing drug safety and mitigating health concerns: High-resolution mass spectrometry in the levothyroxine case study
Hana Chmelařová, Maria Carmen Catapano, Jean-Christophe Garrigues, František Švec, Lucie Nováková
, Available online  , doi: 10.1016/j.jpha.2024.100970
Levothyroxine is a drug with a narrow therapeutic index. Changing the drug formulation composition or switching between pharmaceutical brands can alter the bioavailability, which can result in major health problems. However, the increased adverse drug reactions have not been fully explained scientifically yet and a thorough investigation of the formulations is needed.In this study, we used a non-targeted analytical approach to examine the various levothyroxine formulas in detail and to reveal possible chemical changes. Ultra-high-performance liquid chromatography coupled with a data-independent acquisition high-resolution mass spectrometry (UHPLC-DIA-HRMS) was employed.UHPLC-DIA-HRMS allowed aside the detection of levothyroxine degradation products also the presence of non-expected components in the formulations. Among these, we identified compounds resulting from reactions between mannitol and other excipients, such as citric acid, stearate, and palmitate, or from reactions between an excipient and an active pharmaceutical ingredient, such as levothyroxine-lactose adduct. In addition to these compounds, undeclared phospholipids were also found in three formulations. This non-targeted approach is not common in pharmaceutical quality control analysis. Revealing the presence of unexpected compounds in drug formulations proved that the current control mechanisms do not have to cover the full complexity of pharmaceutical formulations necessarily.
Spatially resolved metabolomics visualizes heterogeneous distribution of metabolites in lung tissue and the anti-pulmonary fibrosis effect of Prismatomeris connate extract
Haiyan Jiang, Bowen Zheng, Guang Hu, Lian Kuang, Tianyu Zhou, Sizheng Li, Xinyi Chen, Chuangjun Li, Dongming Zhang, Jinlan Zhang, Zengyan Yang, Jiuming He, Hongtao Jin
, Available online  , doi: 10.1016/j.jpha.2024.100971
Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treatment of pulmonary fibrosis. Hence, there is an urgent need for developing novel drugs to address such diseases. properties. Our study found for the first time that a natural source of Prismatomeris connate ethyl acetate extract (HG-2) had a significant anti-pulmonary fibrosis effect by inhibiting the expression of the transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/Smad) pathway. Network pharmacological analysis suggested that HG-2 had effects on tyrosine kinase phosphorylation, cellular response to reactive oxygen species, and extracellular matrix disassembly. Moreover, mass spectrometry imaging (MSI) was used to visualize the heterogeneous distribution of endogenous metabolites in lung tissue and reveal the anti-pulmonary fibrosis metabolic mechanism of HG-2, which was related to arginine synthesis, alanine, aspartic acid and glutamate metabolism, the down-regulation of arachidonic acid metabolism, and the up-regulation of glycerophospholipid metabolism. In conclusion, we elaborated on the relationship between metabolite distribution and the progression of PF, constructed the regulatory metabolic network of HG-2, and discovered the multi-target therapeutic effect of HG-2, which might be conducive to the development of new drugs for PF.
Structural characterization and mechanisms of macrophage immunomodulatory activity of a novel polysaccharide with a galactose backbone from the processed Polygonati Rhizoma
Hongna Su, Lili He, Xina Yu, Yue Wang, Li Yang, Xiaorui Wang, Xiaojun Yao, Pei Luo, Zhifeng Zhang
, Available online  , doi: 10.1016/j.jpha.2024.100974
A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-β-D-Galp-(1]9→4,6)-β-D-Galp-(1→4)-α-D-GalpA-(1→4)-α-D-GalpA-(1→4)-α-D-Glcp-(1→4,6)-α-D-Glcp-(1→4)-α/β-D-Glcp, with a branch chain of R1: β-D-Galp-(1→3)-β-D-Galp-(1→ connected to the →4,6)-β-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1→6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1β and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K) of 18.8 μM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.
Baicalein: a potential GLP-1R agonist improves cognitive disorder of diabetes through mitophagy enhancement
Na Liu, Xin Cui, Wenhui Yan, Tingli Guo, Zhuanzhuan Wang, Xiaotong Wei, Yuzhuo Sun, Jieyun Liu, Cheng Xian, Weina Ma, Lina Chen
, Available online  , doi: 10.1016/j.jpha.2024.100968
There is increasing evidence that the activation of glucagon-like peptide-1 receptor (GLP-1R) can be used as a therapeutic intervention for cognitive disorders. Here, we have screened GLP-1R targeted compounds from Scutellaria baicalensis, which revealed baicalein is a potential GLP-1R small-molecule agonist. Mitophagy, a selective autophagy pathway for mitochondrial quality control, plays a neuroprotective role in multiple cognitive impairment diseases. We noticed that Glp1r knock-out (KO) mice present cognitive impairment symptoms and appear worse in spatial learning memory and learning capacity in Morris water maze (MWM) test than their wide-type (WT) counterparts. Our mechanistic studies revealed that mitophagy is impaired in hippocampus tissue of diabetic mice and Glp1r KO mice. Finally, we verified that the cognitive improvement effects of baicalein on diabetic cognitive dysfunction occur through the enhancement of mitophagy in a GLP-1R-dependent manner. Our findings shed light on the importance of GLP-1R for cognitive function maintenance, and revealed the vital significance of GLP-1R for maintaining mitochondrial homeostasis. Furthermore, we identified the therapeutic potential of baicalein in the treatment of cognitive disorder associated with diabetes.
CA IX-targeted Ag2S Quantum Dots Bioprobe for NIR-II Imaging-guided Hypoxia tumor Chemo-Photothermal Therapy
Xinyue Cui, Zhuang Hu, Ruihan Li, Peng Jiang, Yongchang Wei, Zilin Chen
, Available online  , doi: 10.1016/j.jpha.2024.100969
Hypoxia is the common characteristic of almost all solid tumors, which prevents therapeutic drugs from reaching the tumors. Therefore, the development of new targeted agents for the accurate diagnosis of hypoxia tumors is widely concerned. As carbonic anhydrase IX (CA IX) is abundantly distributed on the hypoxia tumor cells, it is considered as a potential tumor biomarker. 4-(2-aminoethyl)benzenesulfonamide (ABS) as a CA IX inhibitor has inherent inhibitory activity and good targeting effect. In this study, Ag2S quantum dots (QDs) were used as the carrier to prepare a novel diagnostic and therapeutic bioprobe (Ag2S@polyethylene glycol (PEG)-ABS) through ligand exchange and amide condensation reaction. Ag2S@PEG-ABS can selectively target tumors by surface-modified ABS and achieve accurate tumor imaging by the Near Infrared-II (NIR-II) fluorescence characteristics of Ag2S QDs. PEG modification of Ag2S QDs greatly improves its water solubility and stability, so achieves high photothermal stability and high photothermal conversion efficiency (PCE) of 45.17%. Under laser irradiation, Ag2S@PEG-ABS has powerful photothermal and inherent antitumor combinations on colon cancer cells (CT-26) in vitro. It also has been proved that Ag2S@PEG-ABS can realize the effective treatment of hypoxia tumors in vivo and show good biocompatibility. Therefore, it is a new efficient integrated platform for the diagnosis and treatment of hypoxia tumors.
Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry
Arnik Shah, Dipanwita Batabyal, Dayong Qiu, Weidong Cui, John Harrahy, Alexander R. Ivanov
, Available online  , doi: 10.1016/j.jpha.2024.100966
Biotherapeutic’s higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
Radiotracer labelled thymohydroquinyl gallate capped gold nanoparticles as theranostic radiopharmaceutical for targeted antineoplastic and bioimaging
Munaza Batool, Batool Fatima, Dilshad Hussain, Rubaida Mahmood, Muhammad Imran, Saeed Akhter, Muhammad Saqib Khan, Saadat Majeed, Muhammad Najam-ul-Haq
, Available online  , doi: 10.1016/j.jpha.2024.100965
Thymoquinone (Tq) and gallic acid (GA) are known for counter-tumorigenic characteristics. GA inhibits cancer cell proliferation by interfering with many apoptotic signaling pathways, producing more reactive oxygen species (ROS), focusing on the cell cycle, and suppressing the expression of oncogenes and matrix metalloproteinases (MMPs). In this study, thymoquinone (after reducing to thymohydroquinone) and gallic acid are esterified to form thymohydroquinyl gallate (a prodrug). Thymohydroquinyl gallate (THQG) possesses enhanced antineoplastic efficacy and targeted delivery potential. The chemical and spectroscopic analysis confirms ester synthesis. Gold nanoparticles (AuNPs) are employed as nanocarriers due to their physicochemical and optical characteristics, biocompatibility, and low toxicity. As an efficient drug transporter, gold nanoparticles (AuNPs) shield conjugated drugs from enzymatic digestion. The prodrug acts as a reducing agent for Au metal atoms and is loaded onto it after reduction. The nano drug is radiolabeled with 99mTc and 131I to monitor the drug biodistribution in animals using a gamma camera and single-photon emission computerized tomography (SPECT). 131I is an antineoplastic that helps enhance the drug's efficiency. Chromatographic results reveal promising radiolabeling percentages. In vitro, drug release shows sustained release at pH 5.8. In vitro 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) cytotoxicity assay reveals drug potency on CAL 27 and MCF 7 cell lines.
17β-estradiol, through activating G protein-coupled estrogen receptor, exacerbated the complication of benign prostate hyperplasia in type 2 diabetes mellitus by inducing prostatic proliferation
Tingting Yang, Zhen Qiu, Jiaming Shen, Yutian He, Longxiang Yin, Li Chen, Jiayu Yuan, Junjie Liu, Tao Wang, Zhenzhou Jiang, Changjiang Ying, Sitong Qian, Jinfang Song, Xiaoxing Yin, Qian Lu
, Available online  , doi: 10.1016/j.jpha.2024.03.003
Benign prostate hyperplasia (BPH) is one of the major chronic complications of type 2 diabetes mellitus (T2DM), and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH. The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients, including simple BPH patients, newly diagnosed T2DM patients, T2DM complicated with BPH patients and matched healthy individuals. The G protein-coupled estrogen receptor (GPER) inhibitor G15, GPER knockdown lentivirus, the YAP1 inhibitor verteporfin, YAP1 knockdown/overexpression lentivirus, targeted metabolomics analysis, and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH. The homeostasis of sex steroid hormone is disrupted in the serum of patients, accompanying with the proliferated prostatic epithelial cells (PECs). The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals. Elevated 17β-estradiol (E2) is the key contributor to the disrupted sex steroid hormone homeostasis, and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH. Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose (HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer. Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells. The anti-proliferative effects of verteporfin, an inhibitor of YAP1, are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells. Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.
Progress and application of intelligent nanomedicine in urinary system tumors
YingmingXiao, Lei Zhong, Jinpeng Liu, Li Chen, Yi Wu, Ge Li
, Available online  , doi: 10.1016/j.jpha.2024.100964
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design
Meihong Zhang, Mengqin Guo, Yue Gao, Chuanbin Wu, Xin Pan, Zhengwei Huang
, Available online  , doi: 10.1016/j.jpha.2024.03.001
Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well- known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4, lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.
β-elemene promotes miR-127-3p maturation, induces NSCLCs autophagy, and enhances macrophage M1 polarization through exosomal communication
Xiahui Wu, Jie Wu, Tingting Dai, Qiangcheng Wang, Shengjie Cai, Xuehan Wei, Jing Chen, Ziyu Jiang
, Available online  , doi: 10.1016/j.jpha.2024.03.002
β-elemene has been observed to exert inhibitory effects on a multitude of tumors, primarily through multiple pathways such as the inhibition of cancer cell proliferation and the induction of apoptosis. The present study is designed to elucidate the role and underlying mechanisms of β-elemene in the therapeutic intervention of non-small cell lung cancer (NSCLC). Both in vitro and in vivo experimental models corroborate the inhibitory potency of β-elemene on NSCLCs. Our findings indicate that β-elemene facilitates the maturation of miR-127-3p by inhibiting CBX8. Functioning as an upstream regulator of MAPK4, miR-127-3p deactivates the Akt/mTOR/p70S6K pathway by targeting MAPK4, thereby inducing autophagy in NSCLCs. Additionally, β-elemene augments the packaging of miR-127-3p into exosomes via SYNCRIP. Exosomal miR-127-3p further stimulates M1 polarization of macrophages by suppressing ZC3H4. Taken together, the detailed understanding of the mechanisms through which β-elemene induces autophagy in NSCLCs and facilitates M1 polarization of macrophages provides compelling scientific evidence supporting its potential utility in NSCLC treatment.
Recent Trends and Impact of Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) in Modern Analysis
Bibhu Prasad Nanda, Priyanka Rani, Priyanka Paul, Aman, Subrahmanya S Ganti, Rohit Bhatia
, Available online  , doi: 10.1016/j.jpha.2024.02.013
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that arises when metallic nanoparticles (NPs) or nanostructures interact with incident light. On the other hand, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique rooted in Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures. A detailed exploration of the recent groundbreaking developments in optical biosensors employing LSPR and SERS technologies has been exhaustively discussed along with their underlying principle and the working mechanism. A biosensor chip has been created, featuring a high-density deposition of gold nanoparticles under varying ligand concentration and reaction duration on the substrate. An ordinary description, along with a visual illustration, has been thoroughly provided for concepts such as a sensogram, refractive index shift, surface plasmon resonance (SPR), and the evanescent field, Rayleigh scattering, Raman scattering as well as the electromagnetic enhancement & chemical enhancement. LSPR and SERS both have their advantages and disadvantages but widely used SERS has some advantages over LSPR like chemical specificity, high sensitivity, multiplexing, and versatility in different fields. This review confirms and elucidates the significance of different disease biomarker identification. LSPR, and SERS both play a vital role in the detection of various types of cancer like cervical cancer, ovarian cancer, endometrial cancer, prostate cancer, colorectal cancer, and brain tumors. This proposed optical biosensor provides potential application for early diagnosis and monitoring of viral disease, bacterial infectious diseases, fungal diseases, diabetes, and cardiac disease biosensing. LSPR and SERS provide a new direction for environmental monitoring, food safety, refining of impurities from water samples, and detection of lead. The understanding of these biosensors is still limited and challenging.
Oxalate regulates crystal-cell adhesion and macrophage metabolism via JPT2/PI3K/AKT signaling to promote the progression of kidney stones
Qianlin Song, Chao Song, Xin Chen, Yunhe Xiong, Ziqi He, Xiaozhe Su, Jiawei Zhou, Hu Ke, Caitao Dong, Wenbiao Liao, Sixing Yang
, Available online  , doi: 10.1016/j.jpha.2024.02.010
Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by PI3K/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling. Journal Pre-proof
An Fe-Cu bimetallic organic framework as a microwave sensitizer for treating tumors using combined microwave thermotherapy and chemodynamic therapy
Xinyang Zhu, Chao He, Longfei Tan, Xun Qi, Meng Niu, Xianwei Meng, Hongshan Zhong
, Available online  , doi: 10.1016/j.jpha.2024.02.006
Microwave thermotherapy (MWTT), as a treatment for tumors, lacks specificity and requires sensitizers. Most reported microwave sensitizers are single-metal organic frameworks (MOFs), which must be loaded with ionic liquids to enhance the performance in MWTT. Meanwhile, MWTT is rarely combined with other treatment modalities. Here, we synthesized a novel Fe-Cu bimetallic organic framework FeCuMOF (FCM) by applying a hydrothermal method and further modified it with methyl polyethylene glycol (mPEG). The obtained FeCuMOF@PEG (FCMP) showed remarkable heating performance under low-power microwave irradiation; it also acted as a novel nanoparticle enzyme to catalyze hydrogen peroxide decomposition, producing abundant reactive oxygen species (ROS) to deplete glutathione and prevent ROS clearance from tumor cells during chemodynamic treatment. The FCMP was biodegradable and demonstrated excellent biocompatibility, allowing it to be readily metabolized without causing toxic effects. Finally, it was shown to act as a suitable agent for T2 magnetic resonance imaging (MRI) in vitro and in vivo. This new bimetallic nanostructure could successfully realize two tumor treatment modalities (MWTT and chemodynamic therapy) and dual imaging modes (MRI and microwave thermal imaging). Our findings represent a breakthrough for integrating the diagnosis and treatment of tumors and provides a reference for developing new microwave sensitizers.
Signal interference between drugs and metabolites in LC-ESI-MS quantitative analysis and its evaluation strategy
Fulin Jiang, Jingyu Liu, Yagang Li, Zihan Lu, Qian Liu, Yunhui Xing, Janshon Zhu, Min Huang, Guoping Zhong
, Available online  , doi: 10.1016/j.jpha.2024.02.008
Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS) is a widely utilized technique for in vivo pharmaceutical analysis. Ionization interference within electrospray ion source, occurring between drugs and metabolites, can lead to signal variations, potentially compromising quantitative accuracy. Currently, method validation often overlooks this type of signal interference, which may result in systematic errors in quantitative results without matrix-matched calibration. In this study, we conducted an investigation using ten different groups of drugs and their corresponding metabolites across three LC-ESI-MS systems to assess the prevalence of signal interference. Such interferences can potentially cause or enhance nonlinearity in the calibration curves of drugs and metabolites, thereby altering the relationship between analyte response and concentration for quantification. Finally, we established an evaluation scheme through a step-by-step dilution assay and employed three resolution methods: chromatographic separation, dilution, and stable labeled isotope internal standards correction. The above strategies were integrated into the method establishment process to improve quantitative accuracy.
Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors
Meiyu Qu, Qiangqiang He, , Hangyang Bao, Xing Ji, Tingyu Shen, Muhammad Qasim Barkat, Ximei Wu, Ling-Hui Zeng
, Available online  , doi: 10.1016/j.jpha.2024.02.011
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of such highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and how to control its toxicity has been an important issue. Interestingly, recently emerging evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may decide their toxicity and therapeutic efficacy. Here, we summarized the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
β-glucan-modified nanoparticles with different particle sizes exhibit different lymphatic targeting efficiencies and adjuvant effects
Wen Guo, Xinyue Zhang, Long Wan, Zhiqi Wang, Meiqi Han, Ziwei Yan, Jia Li, Ruizhu Deng, Shenglong Li, Yuling Mao, Siling Wang
, Available online  , doi: 10.1016/j.jpha.2024.02.007
Particle size and surface properties are crucial for lymphatic drainage (LN), dendritic cell (DC) uptake, DC maturation, and antigen cross-presentation induced by nanovaccine injection, which lead to an effective cell-mediated immune response. However, the manner in which the particle size and surface properties of vaccine carriers such as mesoporous silica nanoparticles (MSNs) affect this immune response is unknown. We prepared 50, 100, and 200 nm of MSNs that adsorbed ovalbumin antigen (OVA) while modifying β-glucan to enhance immunogenicity. The results revealed that these MSNs with different particle sizes were just as efficient in vitro, and MSNs with β-glucan modification demonstrated higher efficacy. However, the in vivo results indicated that MSNs with smaller particle sizes have stronger lymphatic targeting efficiency and a greater ability to promote the maturation of DCs. The results also indicate that β-glucan-modified MSN, with a particle size of ~100 nm, has a great potential as a vaccine delivery vehicle and immune adjuvant and offers a novel approach for the delivery of multiple therapeutic agents that target other lymphmediated diseases.
IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis
Alina Cherniienko, Roman Lesyk, Lucjusz Zaprutko, Anna Pawełczyk
, Available online  , doi: 10.1016/j.jpha.2024.02.005
In various industries, particularly the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy’s accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of ex situ and in situ FTIR spectroscopy applications in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR’s potential and develop new applications that improve sustainability in these areas.
MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer
Haowei Zhang, Qixin Li, Xiaolong Guo, Hong Wu, Chenhao Hu, Gaixia Liu, Tianyu Yu, Xiake Hu, Quanpeng Qiu, Gang Guo, Junjun She, Yinnan Chen
, Available online  , doi: 10.1016/j.jpha.2024.02.004
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer (CRC). Cisplatin-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair. Among the elements that lead to cisplatin resistance, O6-methylguanine (O6-MG)-DNA-methyltransferase (MGMT), a DNA-repair enzyme, performs a quintessential role. In this study, we clarify the significant involvement of MGMT in conferring cisplatin resistance in CRC, elucidating the underlying mechanism of the regulatory actions of MGMT. A notable upregulation of MGMT in cisplatin-resistant cancer cells was found in our study, and MGMT repression amplifies the sensitivity of these cells to cisplatin treatment in vitro and in vivo. Conversely, in cancer cells, MGMT overexpression abolishes their sensitivity to cisplatin treatment. Mechanistically, the interaction between MGMT and CDK1 inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1. Meanwhile, to achieve nonhomologous end joining, MGMT interacts with XRCC6 to resist chemotherapy drugs. Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation, and several Wnt inhibitors can repress drug-resistant cells. In summary, our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review
Shuangmeng Jia, Jieshen Huang, Wuyan Lu, Yongen Miao, Kehua Huang, Chenchang Shi, Shuaijun Li, Jiefeng Huang
, Available online  , doi: 10.1016/j.jpha.2024.02.002
Skin flaps are frequently employed in plastic and reconstructive surgery to address tissue defects. However, their low survival rates remain a challenge, attributed to vascular crisis and necrosis. Despite numerous studies investigating drugs to alleviate flap necrosis, a comprehensive analysis of the research trend in this critical area is lacking. To gain a deeper understanding of the current status, research focal points, and future trends in drugs aimed at enhancing flap survival, a thorough retrospective analysis is imperative. This study aims to employ bibliometric methods to scrutinize the evolution, mechanisms, and forthcoming trends of drugs targeting flap survival improvement. Using VOSviewer software, we quantitatively and visually depict 1) annual temporal trends in the number of documents and citations; 2) national/regional publications and their collaborations; 3) institutional and authors’ contribution; 4) journal contribution and relevance; and 5) analysis of research hotspots and directions derived from keywords. Ultimately, we discussed the prospects and challenges of future advances and clinical translation of drugs designed to enhance skin flap survival. In conclusion, the field of pharmacology dedicated to improving skin flap survival is expanding, and this study aims to offer a fresh perspective to promote the advancement and clinical application of such drugs.
Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway
Jiabin Wu, Ke Li, Muge Zhou, Haoyang Gao, Wenhong Wang, Weihua Xiao
, Available online  , doi: 10.1016/j.jpha.2024.01.014
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Non-coding RNAs as therapeutic targets in cancer and its clinical application
Xuejiao Leng, Mengyuan Zhang, Yujing Xu, Jingjing Wang, Ning Ding, Yancheng Yu, Shanliang Sun, Weichen Dai, Xin Xue, Nianguang Li, Ye Yang, Zhihao Shi
, Available online  , doi: 10.1016/j.jpha.2024.02.001
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Bio-soft matter derived from traditional Chinese medicine: characterizations of hierarchical structure, assembly mechanism, and beyond
Guiya Yang, Yue Liu, Yuying Hu, Yue Yuan, Yunan Qin, Quan Li, Shuangcheng Ma
, Available online  , doi: 10.1016/j.jpha.2024.01.011
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules will be introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques will be depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Melatonin enhances the efficacy of anti-PD-L1 by improving hypoxia in residual tumors after insufficient radiofrequency ablation
Yanqiao Ren, Licheng Zhu, Yusheng Guo, Jinqiang Ma, Lian Yang, Chuansheng Zheng, Xiangjun Dong
, Available online  , doi: 10.1016/j.jpha.2024.01.010
The hypoxic microenvironment and inflammatory state of residual tumors caused by insufficient radiofrequency ablation (iRFA) are major reasons for rapid tumor progression and pose challenges for immunotherapy. We retrospectively analyzed the clinical data of patients with hepatocellular carcinoma (HCC) treated with RFA and observed that iRFA was associated with poor survival outcomes and progression-free survival. Using an orthotopic HCC mouse model and a colorectal liver metastasis model, we observed that treatment with melatonin after iRFA reduced tumor growth and metastasis and achieved the best outcomes when combined with anti-programmed death-ligand 1 (anti-PD-L1) therapy. In mechanism, melatonin inhibited the expression of epithelial–mesenchymal transitions, hypoxia-inducible factor-1α and PD-L1 in tumor cells after iRFA. Flow cytometry revealed that melatonin reduced the proportion of myeloid-derived suppressor cells and increased the proportion of CD8+ T cells. Transcriptomic analysis revealed an upregulation of immune-activated function-related genes in residual tumors. These findings demonstrated that melatonin can reverse hypoxia and iRFA-induced inflammation, thereby overcoming the immunosuppressive tumor microenvironment, and enhancing the efficacy of immunotherapy.
In situ repolarization of Tumor-Associated Macrophages with synergic nanoformulation to reverse immunosuppressive TME in mouse breast cancer for cancer therapy
Ruhua Luo, Zhongyu Yue, Qian Yang, Honghua Zhang, Tian Xie, Shuling Wang, Qingchang Tian
, Available online  , doi: 10.1016/j.jpha.2024.01.009
The conversion of tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype could reverse the immunosuppression associated with the tumor microenvironment. Here, we constructed M2 phenotype macrophage-targeted Lipo@CpG-FA by encapsulating CpG ODNs. The combination of Lipo@CpG-FA with FA-Lipo@Ele-AS1411 caused regression and inhibition of 4T1 breast cancers by reversing the M2-TAMs mediated immunosuppression and efficiently inducing effector T cell activation in the tumor microenvironment. In addition to antitumor effects, Elemene (Ele) could inhibit the effect M2 macrophage proliferation by enhancing the therapeutic effects. The application of this strategy may be potentially expanded for cancer therapy in combination with other therapeutics.
Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride
Shu Yang, Zhonghua Wang, Yanhua Liu, Xin Zhang, Hang Zhang, Zhaoying Wang, Zhi Zhou, Zeper Abliz
, Available online  , doi: 10.1016/j.jpha.2024.01.012
Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development. In this study, we present an innovative, integrated approach that combines air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride (NC), a promising anti-tumor drug candidate. Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney, particularly within the inner cortex (IC) region, following single and repeated dose of NC. High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule. Employing spatial metabolomics based on AFADESI-MSI, we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure. These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters (organic cation transporters, multidrug and toxin extrusion, organic cation transporter 2), metabolic enzymes (protein arginine N-methyltransferase, nitric oxide synthase), mitochondria, oxidative stress, and inflammation in NC-induced nephrotoxicity. This study offers novel insights into NC-induced renal damage, representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.
Paeoniflorin ameliorates chronic colitis via the DR3 signaling pathway in group 3 innate lymphoid cells
Shaowei Huang, Xueqian Xie, Bo Xu, Zengfeng Pan, Junjie Liang, Meiling Zhang, Simin Pan, Xiaojing Wang, Meng Zhao, Qing Wang, Jinyan Chen, Yanyang Li, Lian Zhou, Xia Luo
, Available online  , doi: 10.1016/j.jpha.2024.01.008
Inhibiting the death receptor 3 (DR3) signaling pathway in group 3 innate lymphoid cells (ILC3s) presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis (UC). Paeoniflorin, a prominent component of Paeonia lactiflora Pall., has demonstrated the ability to restore barrier function in UC mice, but the precise mechanism remains unclear. In this study, we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s. C57BL/6 mice were subjected to random allocation into 7 distinct groups, namely the control group, the 2% dextran sodium sulfate (DSS) group, the paeoniflorin groups (25, 50, and 100 mg/kg), the anti- tumor necrosis factor- like ligand 1A (anti-TL1A) antibody group, and the IgG group. We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using western blot and flow cytometry, respectively. Meanwhile, DR3- overexpressing MNK-3 cells and 2% DSS-induced Rag1-/- mice were used for verification. The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier. Simultaneously, paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines (Interleukin-17A, Granulocyte-macrophage colony stimulating factor, and Interleukin- 22). Alternatively, paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system. We additionally confirmed that paeoniflorin-conditioned medium (CM) restored the expression of tight junctions in Caco-2 cells via coculture. In conclusion, paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner, and its mechanism is associated with the inhibition of the DR3 signaling pathway.
PEG-PLGA nanoparticles deposited in Pseudomonas aeruginosa and Burkolderia cenocepacia
Tinatini Tchatchiashvilli, Helena Duering, , Lisa Mueller-Boetticher, Christian Grune, Dagmar Fischer, Mathias W. Pletz, Oliwia Makarewicz
, Available online  , doi: 10.1016/j.jpha.2024.01.007
In our prior research, polymer nanoparticles containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded Pseudomonas aeruginosa and Burkholderia cenocepacia cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(D,Llactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-block-PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine or noncovalently bound with freely embedded cationic rhodamine B, which served as a drug surrogate. After exposing these nanoparticles to bacteria, we performed cell fractionation and fluorescence analysis, which highlighted the accumulation of cyanine-5-amine in the outer membranes and the accumulation of rhodamine B in the cytoplasm of cells. The results indicated that these organic nanoparticles are effective vehicles for targeted antibiotic delivery in bacterial cells, explaining the observed increase in the efficacy of encapsulated tobramycin against biofilms. This work emphasizes the potential of PEGPLGA-based formulations for advanced drug delivery strategies.
Platelet membrane biomimetic nanomedicine induces dual glutathione consumption for enhancing cancer radioimmunotherapy
Xiaopeng Li, Yang Zhong, Pengyuan Qi, Daoming Zhu, Chenglong Sun, Nan Wei, Yang Zhang, Zhanggui Wang
, Available online  , doi: 10.1016/j.jpha.2024.01.003
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy. This biomimetic nanomedicine consists of an external platelet membrane and internal organic mesoporous silica nanoparticles (MON) loaded with 2-deoxy-D-glucose (2-DG). Thanks to the tumor-targeting ability of the platelet membranes, PMD can target and aggregate to the tumor site, which is internalized by tumor cells. Within tumor cells overexpressing GSH, MON reacts with GSH to degrade and release 2-DG. This step initially depletes the intracellular GSH content. The subsequent release of 2-DG inhibits glycolysis and adenosine triphosphate (ATP) production, ultimately leading to secondary GSH consumption. This nanodrug combines dual GSH depletion, starvation therapy, and RT to promote immunogenic cell death and stimulate the systemic immune response. In the bilateral tumor model in vivo, distal tumor growth was also well suppressed. The proportion of mature dendritic cells (DC) and CD8+T cells in the mice was increased. This indicates that PMD can promote anti-tumor radioimmunotherapy and has good prospects for clinical application.
Targeted delivery of rosuvastatin enhances treatment of HHcy-induced atherosclerosis using macrophage membrane-coated nanoparticles
Dayue Liu, Anning Yang, Yulin Li, Zhenxian Li, Peidong You, Hongwen Zhang, Shangkun Quan, Yue Sun, Yaling Zeng, Shengchao Ma, Jiantuan Xiong, Yinju Hao, Guizhong Li, Bin Liu, Huiping Zhang, Yideng Jiang
, Available online  , doi: 10.1016/j.jpha.2024.01.005
Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipidlowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and longterm toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcyinduced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of ABCA1/ABCG1 caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE-/-) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of Møm-coated RVS-loaded PB NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides
Zhenjie Yu, Huarong Shao, Xintian Shao, Linyan Yu, Yanan Gao, Youxiao Ren, Fei Liu, Caicai Meng, Peixue Ling, Qixin Chen
, Available online  , doi: 10.1016/j.jpha.2023.12.022
Unlike chemosynthetic drugs designed for specific molecular and disease targets, active small-molecule natural products typically have a wide range of bioactivities and multiple targets, necessitating extensive screening and development. To address this issue, we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action. As a proofof-concept, we investigated the behavior of mussel oligosaccharide (MOS-1) by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells. We recorded the entire dynamic process of the localization of fluorescein isothiocyanate (FITC)-mussel oligosaccharide (MOS-1) to the lysosomes and visualized the distribution of the drug within the cell. Remarkably, lysosomes containing FITC-MOS- 1 actively recruited lipid droplets, leading to fusion events and increased cellular lipid consumption. These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases. Furthermore, in a high-fat HepG2 cell model and in high-fat diet-fed ApoE−/− mice, MOS-1 significantly promoted triglyceride degradation, reduced lipid droplet accumulation, lowered serum triglyceride levels, and mitigated liver damage and steatosis. Overall, our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase as this methodology contributes to the rapid identification of drug indications. Collectively, this methodology is significant for the screening and development of selective small-molecule drugs, and is expected to expedite the identification of candidate molecules with medicinal effects.
Baicalin alleviates chronic stress-induced breast cancer metastasis via directly targeting β2-adrenergic receptor
Qi Jia, Yinyin Zhou, Li Song, Ximeng Shi, Xuan Jiang, Ruizhi Tao, Aiyun Wang, Yuanyuan Wu, Zhonghong Wei, Yinan Zhang, Xiaoman Li, Yin Lu
, Available online  , doi: 10.1016/j.jpha.2024.01.002
Recent studies have shown that stress can substantially facilitate breast cancer metastasis, which can be ameliorated by nonselective β1/β2-adrenergic receptor (β1/β2- AR) blocker. However, several side effects were identified. Thus, it is extremely warranted to explore more effective and better-tolerated β2-AR blocker. Currently, we demonstrated that baicalin (BA), a major bioactive component of Scutellaria baicalensis Georgi, could significantly attenuate stress hormones especially epinephrine (Epi)-induced breast cancer cell migration and invasion in vitro. Mechanistically, we identified that β2-AR was a direct target of BA via the drug affinity responsive target stability (DARTS) combined with mass spectrum assay, and BA photoaffinity probe with pull-down assay, which was further confirmed by a couple of biophysical and biochemical assays. Furthermore, we demonstrated that BA could directly bind to the Phe-193 and Phe-289 of β2-AR, subsequently inhibit cAMP-PKA- FAK pathway, and thus impede epithelial-mesenchymal transition (EMT), thereby hindering the metastatic progression of the chronic stress coupled with syngeneic and xenograft in vivo orthotopic and tail vein mouse model. These findings firstly identify BA as a potential β2-AR inhibitor in the treatment of stress-induced breast cancer metastasis.
New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation
Li Zhang, Li Yue Xu, Fei Tang, Dong Liu, Xiao Lan Zhao, Jing Nan Zhang, Jia Xia, Jiao Jiao Wu, Yu Yang, Cheng Peng, Hui Ao
, Available online  , doi: 10.1016/j.jpha.2023.12.020
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and antiinflammatory responses to protect the cells from oxidative damage and inflammationmediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases, cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis
Yini Bao, Qiyuan Shan, Keda Lu, Qiao Yang, Ying Liang, Haodan Kuang, Lu Wang, Min Hao, Mengyun Peng, Shuosheng Zhang, Gang Cao
, Available online  , doi: 10.1016/j.jpha.2024.01.001
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system, autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including deoxyribonucleic acid (DNA), protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, endoplasmic reticulum stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Discrimination of Polysorbate 20 by High-Performance Liquid Chromatography-Charged Aerosol Detection and Characterization for Components by Expanding Compound Database and Library
Shi-Qi Wang, Xun Zhao, Li-Jun Zhang, Yue-Mei Zhao, Lei Chen, Jin-Lin Zhang, Bao-Cheng Wang, Sheng Tang, Tom Yuan, Yaozuo Yuan, Mei Zhang, Hian Kee Lee, Hai-Wei Shi
, Available online  , doi: 10.1016/j.jpha.2023.12.019
Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters. The separated components were characterized by ultra-high-performance LC-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with an identical gradient as the HPLC-CAD analysis. The polysorbate compound database and library were expanded over 7-time compared to the commercial database. The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship. UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources. The method observed the impact of 4 degradation conditions on peak components, identifying stable components and their tendencies to change. HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences, distinguishing quasi products.
Design of a Nanozyme−Based Magnetic Nanoplatform to Enhance Photodynamic Therapy and Immunotherapy
Chen Bai, Jiajing Liu, Luyao Bai, Dapeng Yao, Xiaofeng Li, Haoran Zhang, Dong Guo
, Available online  , doi: 10.1016/j.jpha.2023.12.018
The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T−cell−mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual−modality imaging to give real−time tracking and feedback on treatment.
Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway
Guiqin Ye, Xin Sun, Jiuzhou Li, Yuanyuan Mai, Ruilan Gao, Jianbin Zhang
, Available online  , doi: 10.1016/j.jpha.2023.12.016
Lung cancer ranks the top of malignancies that cause cancer-related deaths worldwide. The leaves of Morus alba L are traditional Chinese medicine widely applied in respiratory diseases. Our previous work has demonstrated the anti-lung cancer effect of secondary metabolites of mulberry leaf. But their mechanism of action has still not fully elucidated. We synthesized Moracin N (MAN) probe conjugated with alkyne to label lung cancer cells and identified protein targets by chemical proteomic analysis. MAN and its probe exerted similar growth-inhibitory effect on human lung cancer cells. Chemical proteomic results showed that MAN targeted the programmed death ligand 1 (PD-L1) checkpoint pathway and T cell receptor (TCR) signaling pathway, indicating its immune-regulatory function. Cell-free surface plasmon resonance (SPR) results showed the direct interaction of MAN with PD-L1 protein. Molecular docking analysis demonstrated that MAN bound to E158 residue of PD-L1 protein. MAN downregulated the expression levels of PD-L1 in a time- and dose-dependent manner and disrupted the PD-L1/programmed death 1 (PD-1) binding, including other secondary metabolites of mulberry leaves Guangsangon E (GSE) and Chalcomoracin (CMR). Human peripheral blood mononuclear cells (PBMCs) co-cultured with MAN-treated A549 cells, resulting in the increase of cluster of differentiation (CD)8+ Granzyme B (GZMB)+ T cells and the decrease of CD8+PD-1+ T cells. It suggested that MAN exerts anti-cancer effect through blocking the PD-L1/PD-1 signaling. In vivo, MAN combined with anti-PD-1 antibody significantly inhibited lung cancer development and metastasis, indicating their synergistic effect. Taken together, secondary metabolites of mulberry leaves target the PD-L1/PD-1 signaling, enhance T cell-mediated immunity and inhibit the tumorigenesis of lung cancer. Their modulatory effect on tumor microenvironment makes them able to enhance the therapeutic efficacy of immune checkpoint inhibitors in lung cancer.
Rapid discovery of a novel “green” and natural GST inhibitor for sensitizing hepatocellular carcinoma to Cisplatin by visual screening strategy
Linxi Mao, Yan Qin, Jialong Fan, Wei Yang, Bin Li, Liang Cao, Liqin Yuan, Mengyun Wang, Bin Liu, Wei Wang
, Available online  , doi: 10.1016/j.jpha.2023.12.013
Over-expression of glutathione S-transferase (GST) can promote Cisplatin resistance in hepatocellular carcinoma (HCC) treatment. Hence, inhibiting GST is an attractive strategy to improve Cisplatin sensitivity in HCC therapy. Although several synthesized GST inhibitors have been developed, the side effects and narrow spectrum for anticancer seriously limit their clinical application. Considering the abundance of natural compounds with anticancer activity, this study developed a rapid fluorescence technique to screen “green” natural GST inhibitors with high specificity. The fluorescence assay demonstrated that schisanlactone B (hereafter abbreviated as C1) isolated from Xue tong significantly down-regulated GST levels in Cisplatin-resistant HCC cells in vitro and in vivo. Importantly, C1 can selectively kill HCC cells from normal liver cells, effectively improving the therapeutic effect of Cisplatin on HCC mice by down-regulating GST expression. Considering the high GST levels in HCC patients, this compound demonstrated the high potential for sensitizing HCC therapy in clinical practice by down-regulating GST levels.
Lentinan-Functionalized PBAE-G-nanodiamonds as an adjuvant to induce cGAS-STING Pathway-mediated macrophage activation and immune enhancement
Zhiqiang Zhang, Li Wang, Xia Ma, Hui Wang
, Available online  , doi: 10.1016/j.jpha.2023.12.012
A series of biodegradable nanoparticle-based drug delivery systems have been designed utilizing poly(β-amino ester)-guanidine-phenylboronic acid (PBAE-G) polymers. In this study, a novel Lentinan-Functionalized PBAE-G-nanodiamond system was developed to carry ovalbumin (LNT-PBAE-G-ND@OVA). The impact of this drug delivery system on the activation and maturation of macrophages was then assessed . Furthermore, LNT-PBAE-G-ND@OVA induced potent antibody response and showed no obvious toxicity ` and in vivo. Moreover, treatment with LNT-PBAE-G-ND@OVA was sufficient to alter the expression of genes associated with the cGAS-STING pathway, and the LNT-PBAE-G-ND@OVA induced upregulation of costimulatory molecules. LNT-PBAE-G-ND@OVA treatment was sufficient to induce macrophage activation through a complex mechanism in which cGAS-STING signaling plays an integral role.
3D-Printed Constructs Deliver Bioactive Cargos to Expedite Cartilage Regeneration
Rong Jiao, Xia Lin, Jingchao Wang, Chunyan Zhu, Jiang Hu, Huali Gao, Kun Zhang
, Available online  , doi: 10.1016/j.jpha.2023.12.015
Cartilage is solid connective tissue that recovers slowly from injury, and pain and dysfunction from cartilage damage affect many people. The treatment of cartilage injury is clinically challenging and there is no optimal solution, which is a hot research topic at present. With the rapid development of 3D printing technology in recent years, 3D bioprinting can better mimic the complex microstructure of cartilage tissue and thus enabling the anatomy and functional regeneration of damaged cartilage. This article reviews the methods of 3D printing used to mimic cartilage structures, the selection of cells and biological factors, and the development of bioinks and advances in scaffold structures, with an emphasis on how 3D printing structure provides bioactive cargos in each stage to enhance the effect. Finally, clinical applications and future development of simulated cartilage printing are introduced, which are expected to provide new insights into this field and guide other researchers who are engaged in cartilage repair.
Cornus officinalis with high pressure wine steaming enhanced anti-hepatic fibrosis: Possible through SIRT3-AMPK axis
Xin Han, Yan Ning, Xinyue Dou, Yiwen Wang, Qiyuan Shan, Kao Shi, Zeping Wang, Chuan Ding, Min Hao, Kuilong Wang, Mengyun Peng, Haodan Kuang, Qiao Yang, Xianan Sang, Gang Cao
, Available online  , doi: 10.1016/j.jpha.2023.12.017
Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-β (TGF-β). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.
Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples
Alongkorn Kurilung, Suphitcha Limjiasahapong, Khwanta Kaewnarin, Pattipong Wisanpitayakorn, Narumol Jariyasopit, Kwanjeera Wanichthanarak, Sitanan Sartyoungkul, Stephen Choong Chee Wong, Nuankanya Sathirapongsasuti, Chagriya Kitiyakara, Yongyut Sirivatanauksorn, Sakda Khoomrung
, Available online  , doi: 10.1016/j.jpha.2023.12.011
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of < 1% RSD. The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
Extracellular Vesicles in Anti-tumor Drug Resistance: Mechanisms and Therapeutic Prospects
Hao-Yang Cheng, Guang-Liang Su, Yu-Xuan Wu, Gang Chen, Zi-Li Yu
, Available online  , doi: 10.1016/j.jpha.2023.12.010
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug reflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant tumor cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EVmediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EVbased biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Nitrosamines crisis in pharmaceuticals - insights on toxicological implications, root causes and risk assessment: A systematic review
Hemanth P.R. Vikram, Tegginamath Pramod Kumar, Gunjan Kumar, Narasimha M. Beeraka, Rajashree Deka, Sheik Mohammed Suhail, Sandeep Jat, Namitha Bannimath, Gayatiri Padmanabhan, Ravandur S. Chandan, Pramod Kumar, Bannimath Gurupadayya
, Available online  , doi: 10.1016/j.jpha.2023.12.009
The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients, drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, and formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.
Perspective on in vivo SPME for human applications: starting from monitoring doxorubicin during lung chemo-perfusion
Wei Zhou, Runshan Will Jiang, Barbara Bojko, Janusz Pawliszyn
, Available online  , doi: 10.1016/j.jpha.2023.12.008
In vivo solid-phase microextraction (SPME) is a non-destructive and minimally invasive sampling technique for living systems that facilitates the acquisition of representative metabolome profiles while offering detection of low abundance, short-lived, and unstable species that not easily captured by traditional methods. Recently, following over 10 years of adventure in ex vivo and in vivo animal studies, SPME was successfully applied for in vivo analysis of human tissue. The proposed in vivo SPME method was coupled to LC-MS for monitoring of doxorubicin during in vivo lung perfusion (IVLP) with temporal and spatial information. In view of this breakthrough and considering the already comprehensive body of research on animal models in the literature, we provide here future perspectives on in vivo SPME from three different aspects: optimization and development of SPME features, direct coupling with MS for real-time monitoring, and future applications.
New Advances of adiponectin in regulating obesity and related metabolic syndromes
Yanqi Han, Qianwen Sun, Wei Chen, Yue Gao, Jun Ye, Yanmin Chen, Tingting Wang, Lili Gao, Yuling Liu, Yanfang Yang
, Available online  , doi: 10.1016/j.jpha.2023.12.003
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation
Jiani Zhong, Hang Chen, Qiming Liu, Shenghua Zhou, Zhenguo Liu, Yichao Xiao
, Available online  , doi: 10.1016/j.jpha.2023.12.007
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure, increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Basic Regulatory Science Behind Drug Substance and Drug Product Specifications of Monoclonal Antibodies and Other Protein Therapeutics
Patanachai K. Limpikirati, Sorrayut Mongkoltipparat, Thinnaphat Denchaipradit, Nathathai Siwasophonpong, Wudthipong Pornnopparat, Parawan Ramanandana, Phumrapee Pianpakt, Songsak Tongchusak, Maoxin Tim Tian, Trairak Pisitkun
, Available online  , doi: 10.1016/j.jpha.2023.12.006
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice
Ting Gao, Yixuan Li, Xiaoyu Wang, Fazheng Ren
, Available online  , doi: 10.1016/j.jpha.2023.12.001
The “gut-skin” axis has been proved and is considered as a novel therapy for the prevention of skin aging. The antioxidant efficacy of oligomannonic acid (MAOS), make it an intriguing target for use to improve skin aging. The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice. The data indicated there was a skin aging phenotypes, oxidative stress, skin mitochondrial dysfunction and intestinal dysbiosis (especially the butyrate and HIF-1α levels decreased) in aging mice. Similarly, fecal microbiota transplantation (FMT) from aging mice rebuild the aging-like phenotypes. Further, we demonstrated MAOS-mediated colonic butyrate-HIF-1α axis homeostasis promoted the entry of butyrate into the skin, up-regulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1α/mitophagy loop in skin of mice. Overall, our study offered a better insights of the effectiveness of AOS, promised to become a personalized targeted therapeutic agents, on gut-skin axis disorder inducing skin aging.
Sonodynamic therapy for the treatment of atherosclerosis
Yan Zhang, Ying Yang, Yudi Feng, Xueyan Gao, Liping Pei, Xiaopan Li, Bingxin Gao, Lin Liu, Chengzeng Wang, Shuochen Gao
, Available online  , doi: 10.1016/j.jpha.2023.11.016
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), as a non-invasive and local methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT’s therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Apatinib and gamabufotalin co-loaded lipid/prussian blue nanoparticles for synergistic therapy to gastric cancer with metastasis
Binlong Chen, Yanzhong Zhao, Zichang Lin, Jiahao Liang, Jialong Fan, Yanyan Huang, Leye He, Bin Liu
, Available online  , doi: 10.1016/j.jpha.2023.11.011
Due to the non-targeted release and low solubility of anti-gastric cancer agent, apatinib (Apa), a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects, as well. In order to avoid these drawbacks, lipid-film-coated Prussian blue nanoparticles (PB NPs) with hyaluronan (HA) modification was used for Apa loading to improve its solubility and targeting ability. Furthermore, anti-tumor compound of gamabufotalin (CS-6) was selected as a partner of Apa with reducing dosage for combinational gastric therapy. Thus, HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue. In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating VEGFR and MMP-9. In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects. In summary, we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer (GC) therapy.
Ginsenoside Rb1 induces hepatic stellate cell ferroptosis to alleviate liver fibrosis via the BECN1/SLC7A11 axis
Lifan Lin, Xinmiao Li, Yifei Li, Zhichao Lang, Yeping Li, Jianjian Zheng
, Available online  , doi: 10.1016/j.jpha.2023.11.009
Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), a process associated with ferroptosis. Ginsenoside Rb1 (GRb1), a major active component extracted from Panax ginseng, inhibits HSC activation. However, the potential role of GRb1 in mediating HSC ferroptosis remains unclear. This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro, using CCl4-induced liver fibrosis mouse model and primary HSCs, LX-2 cells. The findings revealed that GRb1 effectively inactivated HSCs in vitro, reducing alpha-smooth muscle actin and Type I collagen levels. Moreover, GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo. From a mechanistic standpoint, the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1. Specifically, GRb1 promoted HSC ferroptosis both in vivo and in vitro, characterized by increased glutathione depletion, malondialdehyde production, iron overload, and accumulation of reactive oxygen species. Intriguingly, GRb1 increased Beclin 1 (BECN1) levels and decreased the System Xc-key subunit SLC7A11. Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1. Moreover, BECN1 could directly interact with SLC7A11, initiating HSC ferroptosis. In conclusion, the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro. Overall, this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation, at least partly through its modulation of BECN1 and SLC7A11.
Targeted protein degradation: A promising approach for cancer treatment
Muhammad Zafar Irshad Khan, Adila Nazli, Iffat Naz, Dildar Khan, Ihsan-ul Haq, Jian-Zhong Chen
, Available online  , doi: 10.1016/j.jpha.2023.09.004
Targeted protein degradation (TPD) is a promising approach that has the ability to address disease-causing proteins. Compared to traditional inhibition, proteolysis targeting chimera (PROTAC) technology offers various benefits, including the potential to target mutant and overexpressed proteins along with characteristics to target undruggable proteomes. A significant obstacle to the ongoing effective treatment of malignancies is cancer drug resistance, which is developed frequently by mutated or overexpressed protein targets and causes current remedies to continuously lose their effectiveness. The effective use of PROTACs to degrade targets that have undergone mutations and conferred resistance to first-line cancer therapies has attracted much research attention. To find novel/effective treatments, we analyzed the advancements in PROTACs aimed at cancer resistance and targets. This review provides a description of how PROTAC-based anticancer drugs are currently being developed and how to counter resistance if developed to PROTAC technology. Moreover, modern technologies related to protein degradation, including autophagy-targeting chimeras (AUTAC), lysosome-targeting chimeras (LYTAC), antibody-based PROTAC (AbTAC), Glue-body chimeras (GlueTAC), transcription-factor-targeting chimeras (TRAFTAC), RNA-PROTAC, aptamer-PROTAC, Photo-PROTAC, folate-PROTAC, and in-cell click-formed proteolysis targeting chimeras (CLIPTACs), have been discussed along with their mechanisms of action.
Caenorhabditis elegansdeep lipidome profiling by using integrative mass spectrometry acquisitions reveals significantly altered lipid networks
Nguyen Hoang Anh, Young Cheol Yoon, Young Jin Min, Nguyen Phuoc Long, Cheol Woon Jung, Sun Jo Kim, Suk Won Kim, Eun Goo Lee, Daijie Wang, Xiao Wang, Sung Won Kwon
, Available online  , doi:
Lipidomics coverage improvement is essential for functional lipid and pathway construction. powerful approach to discovering organism lipidome is to combine various data acquisitions, uch as full scan (full MS), data-dependent acquisition (DDA), and data-independent acquisition DIA). Caenorhabditis elegans(C. elegans) is a useful model for discovering toxic-induced etabolism, high-throughput drug screening, and a variety of human disease pathways. To etermine the lipidome of C. elegans and investigate lipid disruption from the molecular to the ystem biology level, we used integrative data acquisition. The methyl-tert-butyl ether method was sed to extract L4 stage C. elegans after exposure to triclosan (TCS), perfluorooctanoic acid, and nanopolystyrene (nPS). Full MS, DDA, and DIA integrations were performed to comprehensively profile the C. elegans lipidome by Q-Exactive Plus mass spectrometry. All annotated lipids were then analyzed using lipid ontology and pathway analysis. We annotated up to 940 lipids from 20 lipid classes involved in various functions and pathways. The biological investigations revealed that when C. elegans were exposed to nPS, lipid droplets were disrupted, whereas plasma membrane-functionalized lipids were likely changed in the TCS treatment group. The nPS treatment caused a significant disruption in lipid storage. Triacylglycerol, glycerophospholipid, and ether class lipids were those primarily hindered by toxicants. Finally, toxicant exposure frequently involves numerous lipid-related pathways, including the PI3K/AKT pathway. In conclusion, an integrative data acquisition strategy was used to characterize the C. elegans lipidome, providing valuable biological insights needed for hypothesis generation and validation.