Volume 15 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
Tong Xin, Luyao Yu, Wenying Zhang, Yingxia Guo, Chuya Wang, Zhong Li, Jiansong You, Hongyu Xue, Meiyun Shi, Lei Yin. Greenness evaluation metric for analytical methods and software[J]. Journal of Pharmaceutical Analysis, 2025, 15(7): 101202. doi: 10.1016/j.jpha.2025.101202
Citation: Tong Xin, Luyao Yu, Wenying Zhang, Yingxia Guo, Chuya Wang, Zhong Li, Jiansong You, Hongyu Xue, Meiyun Shi, Lei Yin. Greenness evaluation metric for analytical methods and software[J]. Journal of Pharmaceutical Analysis, 2025, 15(7): 101202. doi: 10.1016/j.jpha.2025.101202

Greenness evaluation metric for analytical methods and software

doi: 10.1016/j.jpha.2025.101202
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 81603182 and 81703607), the Fundamental Research Funds for the Central Universities, China (Grant Nos.: DUT21RC(3)057, DUT23YG226, DUT24MS018, and DUT23YG228), the Natural Science Foundation of Liaoning Province, China (Grant No.: 2023-MSBA-018), and the Open Funding of Cancer Hospital of Dalian University of Technology, China (Grant No.: 2024-ZLKF-33). We thank LetPub (www.letpub.com.cn) for its linguistic assistance during the preparation of this manuscript.

  • Received Date: Aug. 01, 2024
  • Accepted Date: Jan. 16, 2025
  • Rev Recd Date: Dec. 16, 2024
  • Publish Date: Jan. 23, 2025
  • The focus of green analytical chemistry (GAC) is to minimize the negative impacts of analytical procedures on human safety, human health, and the environment. Several factors, such as the reagents used, sample collection, sample processing, instruments, energy consumed, and the quantities of hazardous materials and waste generated during analytical procedures, need to be considered in the evaluation of the greenness of analytical assays. In this study, we propose a greenness evaluation metric for analytical methods (GEMAM). The new greenness metric is simple, flexible, and comprehensive. The evaluation criteria are based on both the 12 principles of GAC (SIGNIFICANCE) and the 10 factors of sample preparation, and the results are presented on a 0–10 scale. The GEMAM calculation process is easy to perform, and its results are easy to interpret. The output of GEMAM is a pictogram that can provide both qualitative and quantitative information based on color and number.
  • loading
  • [1]
    A. Rani, H. Singh, G. Kaur, et al., Introduction to Green Analytical Chemistry. M.H. El-Maghrabey, V. Sivasankar, R.N. El-Shaheny, Green Chemical Analysis and Sample Preparations: Procedures, Instrumentation, Data Metrics, and Sustainability, Springer International Publishing, Cham, 2022, pp. 1−27.
    [2]
    M. de La Guardia, K.D. Khalaf, V. Carbonell, et al., Clean analytical method for the determination of propoxur, Anal. Chim. Acta 308 (1995) 462-468.
    [3]
    J. Namiesnik, B. Zygmunt, Role of reference materials in analysis of environmental pollutants, Sci. Total Environ. 228 (1999) 243−257.
    [4]
    A.C. Olivieri, G.M. Escandar, Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry, Talanta 204 (2019) 700-712.
    [5]
    M. De La Guardia, An Integrated Approach of Analytical Chemistry, J. Braz. Chem. Soc 10 (1999) 429−437.
    [6]
    A. Galuszka, Z. Migaszewski, J. Namiesnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trac Trends Anal. Chem. 50 (2013) 78-84.
    [7]
    M. Tobiszewski, Metrics for green analytical chemistry, Anal. Methods 8 (2016) 2993−2999.
    [8]
    A.I. Lopez-Lorente, F. Pena-Pereira, S. Pedersen-Bjergaard, et al., The ten principles of green sample preparation, Trac Trends Anal. Chem. 148 (2022), 116530.
    [9]
    National Environmental Methods Index (NEMI). https://www.nemi.gov/home/.
    [10]
    Y. Gaber, U. Tornvall, M.A. Kumar, et al., HPLC-EAT (environmental assessment tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods, Green Chem. 13 (2013) 2021-2025.
    [11]
    R. Hartman, R. Helmy, M. Al-Sayah, et al., Analytical Method Volume Intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry, Green Chem. 13 (2011) 934-939.
    [12]
    A. Galuszka, Z.M. Migaszewski, P. Konieczka, et al., Analytical Eco-Scale for assessing the greenness of analytical procedures, Trac Trends Anal. Chem. 37 (2012) 61-72.
    [13]
    N.H. Abou-Taleb, N.M. El-Enany, D.T. El-Sherbiny, et al., Spider diagram and analytical GREEnness metric approach for assessing the greenness of quantitative 1H-NMR determination of lamotrigine: Taguchi method based optimization, Chemom. Intell. Lab. Syst. 209 (2021), 104198.
    [14]
    J. Plotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green analytical procedure index, Talanta 181 (2018) 204-209.
    [15]
    P.M. Nowak, P. Koscielniak, What color is your method? adaptation of the RGB additive color model to analytical method evaluation, Anal. Chem. 91 (2019) 10343-10352.
    [16]
    A. Ballester-Caudet, P. Campins-Falco, B. Perez, et al., A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon, Trac Trends Anal. Chem. 118 (2019) 538-547.
    [17]
    M.B. Hicks, W. Farrell, C. Aurigemma, et al., Making the move towards modernized greener separations: introduction of the analytical method greenness score (AMGS) calculator, Green Chem. 21 (2019) 1816-1826.
    [18]
    M. Sajid, J. Plotka-Wasylka, Green analytical chemistry metrics: A review, Talanta 238 (2022), 123046.
    [19]
    J. Plotka-Wasylka, W. Wojnowski, Complementary green analytical procedure index (ComplexGAPI) and software, Green Chem. 23 (2021) 8657-8665.
    [20]
    F.R. Mansour, K.M. Omer, J. Plotka-Wasylka, A total scoring system and software for complex modified GAPI (ComplexMoGAPI) application in the assessment of method greenness, Green Anal. Chem. 10 (2024), 100126.
    [21]
    W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, et al., AGREEprep-Analytical greenness metric for sample preparation, Trac Trends Anal. Chem. 149 (2022), 116553.
    [22]
    N. Manousi, W. Wojnowski, J. Plotka-Wasylka, et al., Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality, Green Chem. 25 (2023) 7598-7604.
    [23]
    M. Shi, X. Zheng, N. Zhang, et al., Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods, Trac Trends Anal. Chem. 166 (2023), 117211.
    [24]
    M.H. Ramsey, Challenges for the estimation of uncertainty of measurements made in situ, Accredit. Qual. Assur. 26 (2021) 183-192.
    [25]
    J. Soares da Silva Burato, D.A. Vargas Medina, A.L. de Toffoli, et al., Recent advances and trends in miniaturized sample preparation techniques, J. Sep. Sci. 43 (2020) 202-225.
    [26]
    C. Azorin, J.L. Benede, A. Chisvert, Ultramicroextraction as a miniaturization of the already miniaturized. A step toward nanoextraction and beyond, J. Sep. Sci. 46 (2023), e2300223.
    [27]
    Glossary of Terms Used in Extraction (IUPAC Recommendations 2016), Chem. Int. 38 (2016): 26.−26.
    [28]
    J.M. Kokosa, A. Przyjazny, Green microextraction methodologies for sample preparations, Green Anal. Chem. 3 (2022), 100023.
    [29]
    Challenges in Green Analytical Chemistry. The Royal Society of Chemistry, 2011.
    [30]
    S. Razic, J. Arsenijevic, S. Dogo Mracevic, et al., Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. current challenges and future perspectives: A critical review, Anal. 148 (2023) 3130-3152.
    [31]
    V. David, S.C. Moldoveanu, T. Galaon, Derivatization procedures and their analytical performances for HPLC determination in bioanalysis, Biomed. Chromatogr. 35 (2021), e5008.
    [32]
    M. Sajid, J. Plotka-Wasylka, “Green” nature of the process of derivatization in analytical sample preparation, Trac Trends Anal. Chem. 102 (2018) 16-31.
    [33]
    I. Lavilla, V. Romero, I. Costas, et al., Greener derivatization in analytical chemistry, Trac Trends Anal. Chem. 61 (2014) 1-10.
    [34]
    M.K. Reddy Mudiam, R. Jain, R. Singh, Application of ultrasound-assisted dispersive liquid-liquid microextraction and automated in-port silylation for the simultaneous determination of phenolic endocrine disruptor chemicals in water samples by gas chromatography-triple quadrupole mass spectrometry, Anal. Methods 6 (2014) 1802-1810.
    [35]
    B. Jain, R. Jain, A. Kabir, et al., Rapid determination of non-steroidal anti-inflammatory drugs in urine samples after in-matrix derivatization and fabric phase sorptive extraction-gas chromatography-mass spectrometry analysis, Molecules 27 (2022), 7188.
    [36]
    X. Wang, L. Lin, T. Luan, et al., Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in sediment samples by combining subcritical water extraction and dispersive liquid-liquid microextraction with derivatization, Anal. Chim. Acta 753 (2012) 57-63.
    [37]
    K. Dettmer-Wilde, Derivatization. K. Dettmer-Wilde, W. Engewald, Practical Gas Chromatography: A Comprehensive Reference, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 603-632.
    [38]
    J. Plotka-Wasylka, H.M. Mohamed, A. Kurowska-Susdorf, et al., Green analytical chemistry as an integral part of sustainable education development, Curr. Opin. Green Sustain. Chem. 31 (2021), 100508.
    [39]
    B.P. Nanda, A. Chopra, Y. Kumari, et al., A comprehensive exploration of diverse green analytical techniques and their influence in different analytical fields, Sep. Sci. Plus 7 (2024):e2400004.
    [40]
    M. Tobiszewski, A. Mechlinska, J. Namiesnik, Green analytical chemistry: Theory and practice, Chem. Soc. Rev. 39 (2010) 2869-2878.
    [41]
    A. Agrawal, R. Kecili, F. Ghorbani-Bidkorbeh, et al., Green miniaturized technologies in analytical and bioanalytical chemistry, Trac Trends Anal. Chem. 143 (2021), 116383.
    [42]
    S. Garrigues, F.A. Esteve-Turrillas, M. de la Guardia, Greening the wastes, Curr. Opin. Green Sustain. Chem. 19 (2019) 24-29.
    [43]
    S. Garrigues, S. Armenta, M. de la Guardia, Green strategies for decontamination of analytical wastes, Trac Trends Anal. Chem. 29 (2010) 592-601.
    [44]
    J. Milheiro, R. Vilamarim, L. Filipe-Ribeiro, et al., An accurate single-step LLE method using keeper solvent for quantification of trace amounts of sotolon in Port and white table wines by HPLC-DAD, Food Chem. 350 (2021), 129268.
    [45]
    J. Freitas, R. Perestrelo, R. Cassaca, et al., A fast and environment-friendly MEPSPEP/UHPLC-PDA methodology to assess 3-hydroxy-4, 5-dimethyl-2(5H)-furanone in fortified wines, Food Chem. 214 (2017) 686-693.
    [46]
    V. Lavigne, A. Pons, P. Darriet, et al., Changes in the sotolon content of dry white wines during barrel and bottle aging, J. Agric. Food Chem. 56 (2008) 2688-2693.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (161) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return