| Citation: | Tong Xin, Luyao Yu, Wenying Zhang, Yingxia Guo, Chuya Wang, Zhong Li, Jiansong You, Hongyu Xue, Meiyun Shi, Lei Yin. Greenness evaluation metric for analytical methods and software[J]. Journal of Pharmaceutical Analysis, 2025, 15(7): 101202. doi: 10.1016/j.jpha.2025.101202 |
| [1] |
A. Rani, H. Singh, G. Kaur, et al., Introduction to Green Analytical Chemistry. M.H. El-Maghrabey, V. Sivasankar, R.N. El-Shaheny, Green Chemical Analysis and Sample Preparations: Procedures, Instrumentation, Data Metrics, and Sustainability, Springer International Publishing, Cham, 2022, pp. 1−27.
|
| [2] |
M. de La Guardia, K.D. Khalaf, V. Carbonell, et al., Clean analytical method for the determination of propoxur, Anal. Chim. Acta 308 (1995) 462-468.
|
| [3] |
J. Namiesnik, B. Zygmunt, Role of reference materials in analysis of environmental pollutants, Sci. Total Environ. 228 (1999) 243−257.
|
| [4] |
A.C. Olivieri, G.M. Escandar, Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry, Talanta 204 (2019) 700-712.
|
| [5] |
M. De La Guardia, An Integrated Approach of Analytical Chemistry, J. Braz. Chem. Soc 10 (1999) 429−437.
|
| [6] |
A. Galuszka, Z. Migaszewski, J. Namiesnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trac Trends Anal. Chem. 50 (2013) 78-84.
|
| [7] |
M. Tobiszewski, Metrics for green analytical chemistry, Anal. Methods 8 (2016) 2993−2999.
|
| [8] |
A.I. Lopez-Lorente, F. Pena-Pereira, S. Pedersen-Bjergaard, et al., The ten principles of green sample preparation, Trac Trends Anal. Chem. 148 (2022), 116530.
|
| [9] |
National Environmental Methods Index (NEMI). https://www.nemi.gov/home/.
|
| [10] |
Y. Gaber, U. Tornvall, M.A. Kumar, et al., HPLC-EAT (environmental assessment tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods, Green Chem. 13 (2013) 2021-2025.
|
| [11] |
R. Hartman, R. Helmy, M. Al-Sayah, et al., Analytical Method Volume Intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry, Green Chem. 13 (2011) 934-939.
|
| [12] |
A. Galuszka, Z.M. Migaszewski, P. Konieczka, et al., Analytical Eco-Scale for assessing the greenness of analytical procedures, Trac Trends Anal. Chem. 37 (2012) 61-72.
|
| [13] |
N.H. Abou-Taleb, N.M. El-Enany, D.T. El-Sherbiny, et al., Spider diagram and analytical GREEnness metric approach for assessing the greenness of quantitative 1H-NMR determination of lamotrigine: Taguchi method based optimization, Chemom. Intell. Lab. Syst. 209 (2021), 104198.
|
| [14] |
J. Plotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green analytical procedure index, Talanta 181 (2018) 204-209.
|
| [15] |
P.M. Nowak, P. Koscielniak, What color is your method? adaptation of the RGB additive color model to analytical method evaluation, Anal. Chem. 91 (2019) 10343-10352.
|
| [16] |
A. Ballester-Caudet, P. Campins-Falco, B. Perez, et al., A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon, Trac Trends Anal. Chem. 118 (2019) 538-547.
|
| [17] |
M.B. Hicks, W. Farrell, C. Aurigemma, et al., Making the move towards modernized greener separations: introduction of the analytical method greenness score (AMGS) calculator, Green Chem. 21 (2019) 1816-1826.
|
| [18] |
M. Sajid, J. Plotka-Wasylka, Green analytical chemistry metrics: A review, Talanta 238 (2022), 123046.
|
| [19] |
J. Plotka-Wasylka, W. Wojnowski, Complementary green analytical procedure index (ComplexGAPI) and software, Green Chem. 23 (2021) 8657-8665.
|
| [20] |
F.R. Mansour, K.M. Omer, J. Plotka-Wasylka, A total scoring system and software for complex modified GAPI (ComplexMoGAPI) application in the assessment of method greenness, Green Anal. Chem. 10 (2024), 100126.
|
| [21] |
W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, et al., AGREEprep-Analytical greenness metric for sample preparation, Trac Trends Anal. Chem. 149 (2022), 116553.
|
| [22] |
N. Manousi, W. Wojnowski, J. Plotka-Wasylka, et al., Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality, Green Chem. 25 (2023) 7598-7604.
|
| [23] |
M. Shi, X. Zheng, N. Zhang, et al., Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods, Trac Trends Anal. Chem. 166 (2023), 117211.
|
| [24] |
M.H. Ramsey, Challenges for the estimation of uncertainty of measurements made in situ, Accredit. Qual. Assur. 26 (2021) 183-192.
|
| [25] |
J. Soares da Silva Burato, D.A. Vargas Medina, A.L. de Toffoli, et al., Recent advances and trends in miniaturized sample preparation techniques, J. Sep. Sci. 43 (2020) 202-225.
|
| [26] |
C. Azorin, J.L. Benede, A. Chisvert, Ultramicroextraction as a miniaturization of the already miniaturized. A step toward nanoextraction and beyond, J. Sep. Sci. 46 (2023), e2300223.
|
| [27] |
Glossary of Terms Used in Extraction (IUPAC Recommendations 2016), Chem. Int. 38 (2016): 26.−26.
|
| [28] |
J.M. Kokosa, A. Przyjazny, Green microextraction methodologies for sample preparations, Green Anal. Chem. 3 (2022), 100023.
|
| [29] |
Challenges in Green Analytical Chemistry. The Royal Society of Chemistry, 2011.
|
| [30] |
S. Razic, J. Arsenijevic, S. Dogo Mracevic, et al., Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. current challenges and future perspectives: A critical review, Anal. 148 (2023) 3130-3152.
|
| [31] |
V. David, S.C. Moldoveanu, T. Galaon, Derivatization procedures and their analytical performances for HPLC determination in bioanalysis, Biomed. Chromatogr. 35 (2021), e5008.
|
| [32] |
M. Sajid, J. Plotka-Wasylka, “Green” nature of the process of derivatization in analytical sample preparation, Trac Trends Anal. Chem. 102 (2018) 16-31.
|
| [33] |
I. Lavilla, V. Romero, I. Costas, et al., Greener derivatization in analytical chemistry, Trac Trends Anal. Chem. 61 (2014) 1-10.
|
| [34] |
M.K. Reddy Mudiam, R. Jain, R. Singh, Application of ultrasound-assisted dispersive liquid-liquid microextraction and automated in-port silylation for the simultaneous determination of phenolic endocrine disruptor chemicals in water samples by gas chromatography-triple quadrupole mass spectrometry, Anal. Methods 6 (2014) 1802-1810.
|
| [35] |
B. Jain, R. Jain, A. Kabir, et al., Rapid determination of non-steroidal anti-inflammatory drugs in urine samples after in-matrix derivatization and fabric phase sorptive extraction-gas chromatography-mass spectrometry analysis, Molecules 27 (2022), 7188.
|
| [36] |
X. Wang, L. Lin, T. Luan, et al., Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in sediment samples by combining subcritical water extraction and dispersive liquid-liquid microextraction with derivatization, Anal. Chim. Acta 753 (2012) 57-63.
|
| [37] |
K. Dettmer-Wilde, Derivatization. K. Dettmer-Wilde, W. Engewald, Practical Gas Chromatography: A Comprehensive Reference, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 603-632.
|
| [38] |
J. Plotka-Wasylka, H.M. Mohamed, A. Kurowska-Susdorf, et al., Green analytical chemistry as an integral part of sustainable education development, Curr. Opin. Green Sustain. Chem. 31 (2021), 100508.
|
| [39] |
B.P. Nanda, A. Chopra, Y. Kumari, et al., A comprehensive exploration of diverse green analytical techniques and their influence in different analytical fields, Sep. Sci. Plus 7 (2024):e2400004.
|
| [40] |
M. Tobiszewski, A. Mechlinska, J. Namiesnik, Green analytical chemistry: Theory and practice, Chem. Soc. Rev. 39 (2010) 2869-2878.
|
| [41] |
A. Agrawal, R. Kecili, F. Ghorbani-Bidkorbeh, et al., Green miniaturized technologies in analytical and bioanalytical chemistry, Trac Trends Anal. Chem. 143 (2021), 116383.
|
| [42] |
S. Garrigues, F.A. Esteve-Turrillas, M. de la Guardia, Greening the wastes, Curr. Opin. Green Sustain. Chem. 19 (2019) 24-29.
|
| [43] |
S. Garrigues, S. Armenta, M. de la Guardia, Green strategies for decontamination of analytical wastes, Trac Trends Anal. Chem. 29 (2010) 592-601.
|
| [44] |
J. Milheiro, R. Vilamarim, L. Filipe-Ribeiro, et al., An accurate single-step LLE method using keeper solvent for quantification of trace amounts of sotolon in Port and white table wines by HPLC-DAD, Food Chem. 350 (2021), 129268.
|
| [45] |
J. Freitas, R. Perestrelo, R. Cassaca, et al., A fast and environment-friendly MEPSPEP/UHPLC-PDA methodology to assess 3-hydroxy-4, 5-dimethyl-2(5H)-furanone in fortified wines, Food Chem. 214 (2017) 686-693.
|
| [46] |
V. Lavigne, A. Pons, P. Darriet, et al., Changes in the sotolon content of dry white wines during barrel and bottle aging, J. Agric. Food Chem. 56 (2008) 2688-2693.
|