Synergistic antibacterial and anti-inflammatory potentials of dual-loaded self-healing hydrogel for methicillin-resistant Staphylococcus aureus-infected wound healing
1. State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China;
2. Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
Funds:
This work was supported by the National Natural Science Foundation of China (grant U24A20453 and U23A20242), China Postdoctoral Science Foundation (2024T170330, 2024M751096 and GZB20240268).
The emergence of drug-resistant bacterial infection and persistent biofilm colonization pose a rigorous challenge to effective wound healing and regeneration, necessitating the innovative therapeutic strategies to combat these pressing clinical crises. Herein, nortriptyline, a novel FDA-approved tricyclic antidepressant was uncovered to effectively potentiate bactericidal activities of β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, nortriptyline functions by disrupting the microbial iron homeostasis and potentiation of Fenton chemistry-mediated oxidative stress, concomitant with metabolic reprogramming via TCA cycle dysregulation and membrane destabilization. To enhance combination therapy-mediated therapeutic potential in wound management, the dual-loaded self-healing hydrogel OHA-PLL@AN was engineered to exhibit excellent biocompatibility and antibacterial potentials through molecular cross-linking of oxidized hyaluronic acid (OHA) and ε-polylysine (PPL). The therapeutic efficacy of OHA-PLL@AN was further validated in a murine model with MRSA-infected cutaneous wounds. OHA-PLL@AN therapy significantly attenuated the inflammatory response, concurrently promoting angiogenesis and accelerating the cutaneous wounds healing. Collectively, these findings underscore the dual drug-loaded self-healing hydrogel OHA-PLL@AN with anti-infection and anti-inflammatory properties as a novel therapeutic strategy for drug-resistant bacterial infected wounds therapy.