Turn off MathJax
Article Contents
Muhammad Zafar Irshad Khan, Adila Nazli, Iffat Naz, Dildar Khan, Ihsan-ul Haq, Jian-Zhong Chen. Targeted protein degradation: A promising approach for cancer treatment[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2023.09.004
Citation: Muhammad Zafar Irshad Khan, Adila Nazli, Iffat Naz, Dildar Khan, Ihsan-ul Haq, Jian-Zhong Chen. Targeted protein degradation: A promising approach for cancer treatment[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2023.09.004

Targeted protein degradation: A promising approach for cancer treatment

doi: 10.1016/j.jpha.2023.09.004
  • Received Date: Jan. 20, 2023
  • Accepted Date: Sep. 05, 2023
  • Rev Recd Date: Aug. 21, 2023
  • Available Online: Sep. 11, 2023
  • Targeted protein degradation (TPD) is a promising approach that has the ability to address disease-causing proteins. Compared to traditional inhibition, proteolysis targeting chimera (PROTAC) technology offers various benefits, including the potential to target mutant and overexpressed proteins along with characteristics to target undruggable proteomes. A significant obstacle to the ongoing effective treatment of malignancies is cancer drug resistance, which is developed frequently by mutated or overexpressed protein targets and causes current remedies to continuously lose their effectiveness. The effective use of PROTACs to degrade targets that have undergone mutations and conferred resistance to first-line cancer therapies has attracted much research attention. To find novel/effective treatments, we analyzed the advancements in PROTACs aimed at cancer resistance and targets. This review provides a description of how PROTAC-based anticancer drugs are currently being developed and how to counter resistance if developed to PROTAC technology. Moreover, modern technologies related to protein degradation, including autophagy-targeting chimeras (AUTAC), lysosome-targeting chimeras (LYTAC), antibody-based PROTAC (AbTAC), Glue-body chimeras (GlueTAC), transcription-factor-targeting chimeras (TRAFTAC), RNA-PROTAC, aptamer-PROTAC, Photo-PROTAC, folate-PROTAC, and in-cell click-formed proteolysis targeting chimeras (CLIPTACs), have been discussed along with their mechanisms of action.
  • loading
  • K.E. Lundin, O. Gissberg, C.I. Smith, Oligonucleotide therapies: The past and the present, Hum. Gene Ther. 26(2015) 475-485.
    A. Wittrup, J. Lieberman, Knocking down disease: A progress report on siRNA therapeutics, Nat. Rev. Genet. 16(2015) 543-552.
    C. Fellmann, B.G. Gowen, P. Lin, et al., Cornerstones of CRISPR-Cas in drug discovery and therapy, Nat. Rev. Drug Discov. 16(2017) 89-100.
    G. Housman, S. Byler, S. Heerboth, et al., Drug resistance in cancer: An overview, Cancers 6(2014) 1769-1792.
    P. Ottis, C.M. Crews, Proteolysis-targeting chimeras: Induced protein degradation as a therapeutic strategy, ACS Chem. Biol. 12(2017) 892-898.
    K.M. Sakamoto, K.B. Kim, A. Kumagai, et al., Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 8554-8559.
    J. Guo, J. Liu, W. Wei, Degrading proteins in animals: “PROTAC”tion goes in vivo, Cell Res. 29(2019) 179-180.
    K.M. Sakamoto, Protacs for treatment of cancer, Pediatr. Res. 67(2010) 505-508.
    T.K. Neklesa, J.D. Winkler, C.M. Crews, Targeted protein degradation by PROTACs, Pharmacol. Ther. 174(2017) 138-144.
    P.M. Cromm, C.M. Crews, The proteasome in modern drug discovery: Second life of a highly valuable drug target, ACS Cent. Sci. 3(2017) 830-838.
    J.A.M. Bard, E.A. Goodall, E.R. Greene, et al., Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87(2018) 697-724.
    G. Kleiger, T. Mayor, Perilous journey: A tour of the ubiquitin-proteasome system, Trends Cell Biol. 24(2014) 352-359.
    M.S. Hipp, P. Kasturi, F.U. Hartl, The proteostasis network and its decline in ageing, Nat. Rev. Mol. Cell Biol. 20(2019) 421-435.
    X. Sun, Y. Rao, PROTACs as potential therapeutic agents for cancer drug resistance, Biochemistry 59(2020) 240-249.
    Y. Zhou, Y. Xiao, Chemoproteomic-driven discovery of covalent PROTACs, Biochemistry 59(2020) 128-129.
    K.M. Sakamoto, K.B. Kim, R. Verma, et al., Development of protacs to target cancerpromoting proteins for ubiquitination and degradation, Mol. Cell. Proteom. 2(2003) 1350-1358.
    A.L. Schwartz, A. Ciechanover, Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol. 49(2009) 73-96.
    C.M. Olson, B. Jiang, M.A. Erb, et al., Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation, Nat. Chem. Biol. 14(2018) 163-170.
    B. Sun, W. Fiskus, Y. Qian, et al., BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells, Leukemia 32(2018) 343-352.
    D.T. Saenz, W. Fiskus, Y. Qian, et al., Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells, Leukemia 31(2017) 1951-1961.
    C.P. Tinworth, H. Lithgow, I. Churcher, Small molecule-mediated protein knockdown as a new approach to drug discovery, Med. Chem. Commun. 7(2016) 2206-2216.
    Y. Fedorov, E.M. Anderson, A. Birmingham, et al., Off-target effects by siRNA can induce toxic phenotype, RNA 12(2006) 1188-1196.
    J.C. Burnett, J.J. Rossi, RNA-based therapeutics: Current progress and future prospects, Chem. Biol. 19(2012) 60-71.
    M.M. Gosink, R.D. Vierstra, Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes, Proc. Natl. Acad. Sci. USA 92(1995) 9117-9121.
    A.R. Schneekloth, M. Pucheault, H.S. Tae, et al., Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics, Bioorg. Med. Chem. Lett. 18(2008) 5904-5908.
    D.L. Buckley, J.L. Gustafson, I. Van Molle, et al., Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α, Angew. Chem. Int. Ed. 51(2012) 11463-11467.
    D.L. Buckley, I. Van Molle, P.C. Gareiss, et al., Targeting the von hippel-lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction, J. Am. Chem. Soc. 134(2012) 4465-4468.
    S. Su, Z. Yang, H. Gao, et al., Potent and preferential degradation of CDK6 via proteolysis targeting Chimera degraders, J. Med. Chem. 62(2019) 7575-7582.
    C.M. Robb, J.I. Contreras, S. Kour, et al., Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC), Chem. Commun. 53(2017) 7577-7580.
    M. Schiedel, D. Herp, S. Hammelmann, et al., Chemically induced degradation of sirtuin 2(Sirt2) by a proteolysis targeting Chimera (PROTAC) based on sirtuin rearranging ligands (SirReals), J. Med. Chem. 61(2018) 482-491.
    H. Yang, W. Lv, M. He, et al., Plasticity in designing PROTACs for selective and potent degradation of HDAC6, Chem. Commun. 55(2019) 14848-14851.
    M. Zengerle, K.H. Chan, A. Ciulli, Selective small molecule induced degradation of the BET bromodomain protein BRD4, ACS Chem. Biol. 10(2015) 1770-1777.
    X. Wang, S. Feng, J. Fan, et al., New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation, Biochem. Pharmacol. 116(2016) 200-209.
    L. Peng, Z. Zhang, C. Lei, et al., Identification of new small-molecule inducers of estrogenrelated receptor α (ERRα) degradation, ACS Med. Chem. Lett. 10(2019) 767-772.
    M.Z.I. Khan, A. Nazli, Y. Pan, et al., Recent developments in the Medicinal Chemistry and therapeutic potential of anti-cancer Protacs based molecules, Curr. Med. Chem. 30(2022) 1576- 1622.
    D.P. Bondeson, C.M. Crews, Targeted protein degradation by small molecules, Annu. Rev. Pharmacol. Toxicol. 57(2017) 107-123.
    M.S. Gadd, A. Testa, X. Lucas, et al., Structural basis of PROTAC cooperative recognition for selective protein degradation, Nat. Chem. Biol. 13(2017) 514-521.
    K. Montrose, G.W. Krissansen, Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus, Biochem. Biophys. Res. Commun. 453(2014) 735-740.
    X. Zhou, R. Dong, J. Zhang, et al., PROTAC: A promising technology for cancer treatment, Eur. J. Med. Chem. 203(2020), 112539.
    D. Rotin, S. Kumar, Physiological functions of the HECT family of ubiquitin ligases, Nat. Rev. Mol. Cell Biol. 10(2009) 398-409.
    K.M. Sakamoto, Ubiquitin-dependent proteolysis: Its role in human diseases and the design of therapeutic strategies, Mol. Genet. Metab. 77(2002) 44-56.
    P.M. Handley, M. Mueckler, N.R. Siegel, et al., Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1, Proc. Natl. Acad. Sci. U. S. A. 88(1991) 258-262.
    G. Nalepa, M. Rolfe, J.W. Harper, Drug discovery in the ubiquitin-proteasome system, Nat. Rev. Drug Discov. 5(2006) 596-613.
    K. Moreau, M. Coen, A.X. Zhang, et al., Proteolysis-targeting chimeras in drug development: A safety perspective, Br. J. Pharmacol. 177(2020) 1709-1718.
    X. Li, W. Pu, Q. Zheng, et al., Proteolysis-targeting chimeras (PROTACs) in cancer therapy, Mol. Cancer 21(2022) 1-30.
    B. Zhou, J. Hu, F. Xu, et al., Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression, J. Med. Chem. 61(2018) 462-481.
    A.P. Crew, K. Raina, H. Dong, et al., Identification and characterization of von hippel-lindaurecruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1, J. Med. Chem. 61(2018) 583-598.
    J.M. Kelm, D.S. Pandey, E. Malin, et al., PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy, Mol. Cancer 22(2023) 62-105.
    D.L. Buckley, K. Raina, N. Darricarrere, et al., HaloPROTACS: Use of small molecule PROTACs to induce degradation of HaloTag fusion proteins, ACS Chem. Biol. 10(2015) 1831- 1837.
    D.P. Bondeson, B.E. Smith, G.M. Burslem, et al., Lessons in PROTAC design from selective degradation with a promiscuous warhead, Cell Chem. Biol. 25(2018) 78-87.
    A.C. Lai, M. Toure, D. Hellerschmied, et al., Modular PROTAC design for the degradation of oncogenic BCR-ABL, Angew. Chem. Int. Ed Engl. 55(2016) 807-810.
    K.A. Donovan, F.M. Ferguson, J.W. Bushman, et al., Mapping the degradable kinome provides a resource for expedited degrader development, Cell 183(2020) 1714-1731.
    R.I. Troup, C. Fallan, M.G.J. Baud, Current strategies for the design of PROTAC linkers: A critical review, Explor. Target. Anti Tumor Ther. 1(2020) 273-312.
    H.T. Huang, D. Dobrovolsky, J. Paulk, et al., A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader, Cell Chem. Biol. 25(2018) 88-99.
    C. Qin, Y. Hu, B. Zhou, et al., Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting Chimera (PROTAC) degrader of the bromodomain and extraterminal (BET) proteins capable of inducing complete and durable tumor regression, J. Med. Chem. 61(2018) 6685-6704.
    H. Lebraud, D.J. Wright, C.N. Johnson, et al., Protein degradation by In-cell self-assembly of proteolysis targeting chimeras, ACS Cent. Sci. 2(2016) 927-934.
    D. Remillard, D.L. Buckley, J. Paulk, et al., Degradation of the BAF complex factor BRD9 by heterobifunctional ligands, Angew. Chem. Int. Ed. 56(2017) 5738-5743.
    R.P. Nowak, S.L. DeAngelo, D. Buckley, et al., Plasticity in binding confers selectivity in ligand-induced protein degradation, Nat. Chem. Biol. 14(2018) 706-714.
    W.G. Kaelin, The von hippel-lindau tumor suppressor protein: Roles in cancer and oxygen sensing, Cold Spring Harb. Symp. Quant. Biol. 70(2005) 159-166.
    Q. Shi, L. Chen, Cereblon: A protein crucial to the multiple functions of immunomodulatory drugs as well as cell metabolism and disease generation, J. Immunol. Res. 2017(2017), 1-8.
    J. Silke, P. Meier, Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation, Cold Spring Harb. Perspect. Biol. 5(2013), 1-19.
    L. Zhang, B. Riley-Gillis, P. Vijay, et al., Acquired resistance to BET-PROTACs (proteolysistargeting chimeras) caused by genomic alterations in core components of E3 ligase complexes, Mol. Cancer Ther. 18(2019) 1302-1311.
    C.E. Powell, Y. Gao, L. Tan, et al., Chemically induced degradation of anaplastic lymphoma kinase (ALK), J. Med. Chem. 61(2018) 4249-4255.
    X. Han, C. Wang, C. Qin, et al., Discovery of ARD-69 as a highly potent proteolysis targeting Chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer, J. Med. Chem. 62(2019) 941-964.
    X. Han, L. Zhao, W. Xiang, et al., Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands, J. Med. Chem. 62(2019) 11218-11231.
    T. Neklesa, L. Snyder, R. Willard, et al., ARV-110: An androgen receptor PROTAC degrader for prostate cancer, Cancer Res. 78(2018) 5236.
    T. Neklesa, L. Snyder, R.R. Willard, et al., ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer, J. Clinl. Onco. 37(2019) 1200.
    S. Khan, X. Zhang, D. Lv, et al., A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity, Nat. Med. 25(2019) 1938-1947.
    G.M. Burslem, A.R. Schultz, D.P. Bondeson, et al., Targeting BCR-ABL1 in chronic myeloid leukemia by PROTACS-mediated targeted protein degradation, Cancer. Res. 79(2019) 4744- 4753.
    Q. Zhao, C. Ren, L. Liu, et al., Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von hippel-lindau (VHL) E3 ubiquitin ligase, J. Med. Chem. 62(2019) 9281-9298.
    S.L. Lim, A. Damnernsawad, P. Shyamsunder, et al., Proteolysis targeting chimeric molecules as therapy for multiple myeloma: Efficacy, biomarker and drug combinations, Haematologica. 104(2019) 1209-1220.
    M.J. Roy, S. Winkler, S.J. Hughes, et al., SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate, ACS Chem. Biol. 14(2019) 361-368.
    . A.D. Buhimschi, H.A. Armstrong, M. Toure, et al., Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation, Biochemistry 57(2018) 3564-3575.
    S. Jaime-Figueroa, A.D. Buhimschi, M. Toure, et al., Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties, Bioorg. Med. Chem. Lett. 30(2020), 126877.
    B. Zhao, K. Burgess, PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer, Chem. Commun. 55(2019) 2704-2707.
    H. Chen, F. Chen, N. Liu, et al., Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin-proteasome pathway, Bioorg. Chem. 81(2018) 536-544.
    H. Wu, K. Yang, Z. Zhang, et al., Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity, J. Med. Chem. 62(2019) 7042-7057.
    Y. Li, J. Yang, A. Aguilar, et al., Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting Chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression, J. Med. Chem. 62(2019) 448-466.
    H. Zhou, L. Bai, R. Xu, et al., Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein, J. Med. Chem. 62(2019) 11280-11300.
    J. Hu, B. Hu, M. Wang, et al., Discovery of ERD-308 as a highly potent proteolysis targeting Chimera (PROTAC) degrader of estrogen receptor (ER), J. Med. Chem. 62(2019) 1420-1442.
    W. Li, C. Gao, L. Zhao, et al., Phthalimide conjugations for the degradation of oncogenic PI3K, Eur. J. Med. Chem. 151(2018) 237-247.
    K. Cyrus, M. Wehenkel, E.Y. Choi, et al., Impact of linker length on the activity of PROTACs, Mol. BioSyst. 7(2011) 359-364.
    G.M. Burslem, C.M. Crews, Small-molecule modulation of protein homeostasis, Chem. Rev. 117(2017) 11269-11301.
    C. Cecchini, S. Tardy, L. Scapozza, Linkers as game-changers in PROTAC technology: Emphasizing general trends in PROTAC pharmacokinetics for their rational design, CHIMIA 76(2022), 341.
    I. Churcher, Protac-induced protein degradation in drug discovery: Breaking the rules or just making new ones? J. Med. Chem. 61(2018) 444-452.
    Y. Wang, X. Jiang, F. Feng, et al., Degradation of proteins by PROTACs and other strategies, Acta Pharm. Sin. B 10(2020) 207-238.
    Y. Atilaw, V. Poongavanam, C. Svensson Nilsson, et al., Solution conformations shed light on PROTAC cell permeability, ACS Med. Chem. Lett. 12(2021) 107-114.
    R. Webster, E. Didier, P. Harris, et al., PEGylated proteins: Evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos. 35(2007) 9-16.
    A. Baumann, D. Tuerck, S. Prabhu, et al., Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: Quo vadis? Drug Discov. Today 19(2014) 1623-1631.
    R. Webster, V. Elliott, B.K. Park, et al., PEG and PEG conjugates toxicity: Towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals. PEGylated Protein Drugs: Basic Science and Clinical Applications., 2009: 127-146.
    C. Cecchini, S. Pannilunghi, S. Tardy, et al., From conception to development: Investigating PROTACs features for improved cell permeability and successful protein degradation, Front. Chem. 9(2021), 672267.
    V.G. Klein, C.E. Townsend, A. Testa, et al., Understanding and improving the membrane permeability of VH032-based PROTACs, ACS Med. Chem. Lett. 11(2020) 1732-1738.
    X. Sun, H. Gao, Y. Yang, et al., PROTACs: Great opportunities for academia and industry, Signal Transduct. Target. Ther. 4(2019), 64.
    H. Lee, D. Puppala, E.Y. Choi, et al., Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: A useful chemical genetic tool, ChemBioChem 8(2007) 2058-2062.
    G.M. Burslem, B.E. Smith, A.C. Lai, et al., The advantages of targeted protein degradation over inhibition: An RTK case study, Cell Chem. Biol. 25(2018) 67-77.
    J. Lu, Y. Qian, M. Altieri, et al., Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4, Chem. Biol. 22(2015) 755-763.
    L.A. Honigberg, A.M. Smith, M. Sirisawad, et al., The Bruton tyrosine kinase inhibitor PCI- 32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy, Proc. Natl. Acad. Sci. U. S. A. 107(2010) 13075-13080.
    R. Gabizon, A. Shraga, P. Gehrtz, et al., Efficient targeted degradation via reversible and irreversible covalent PROTACs, J. Am. Chem. Soc. 142(2020) 11734-11742.
    P.M. Cromm, C.M. Crews, Targeted protein degradation: From chemical biology to drug discovery, Cell Chem. Biol. 24(2017) 1181-1190.
    Y. Wang, L. Lan, M. Wang, et al., PROTACS: A technology with a gold rush-like atmosphere, Eur. J. Med. Chem. 247(2023), 115037.
    S.L. Paiva, C.M. Crews, Targeted protein degradation: Elements of PROTAC design, Curr. Opin. Chem. Biol. 50(2019) 111-119.
    J.J. Flanagan, T.K. Neklesa, Targeting nuclear receptors with PROTAC degraders, Mol. Cell. Endocrinol. 493(2019), 110452.
    C. Wang, Y. Zhang, D. Xing, et al., PROTACs technology for targeting non-oncoproteins: Advances and perspectives, Bioorg. Chem. 114(2021), 105109.
    K.A. Jellinger, Neuropathological aspects of alzheimer disease, parkinson disease and frontotemporal dementia, Neurodegener. Dis. 5(2008) 118-121.
    K. Garber, The PROTAC gold rush, Nat. Biotechnol. 40(2022) 12-16.
    A. Mullard, Targeted protein degraders crowd into the clinic, Nat. Rev. Drug Discov. 20(2021) 247-250.
    D.P. Bondeson, A. Mares, I.E.D. Smith, et al., Catalytic in vivo protein knockdown by smallmolecule PROTACs, Nat. Chem. Biol. 11(2015) 611-617.
    C.H. Kang, D.H. Lee, C.O. Lee, et al., Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC), Biochem. Biophys. Res. Commun. 505(2018) 542-547.
    . A.P. Crew, K.R. Hornberger, H. Dong, et al., Modulators of estrogen receptor proteolysis and associated methods of use, United States patent 10,604,506, 2020.
    E. Ariazi, J. Ariazi, F. Cordera, et al., Estrogen receptors as therapeutic targets in breast cancer, Curr. Top. Med. Chem. 6(2006) 181-202.
    A. Rodriguez-Gonzalez, K. Cyrus, M. Salcius, et al., Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer, Oncogene 27(2008) 7201-7211.
    J. Flanagan, Y. Qian, S. Gough, et al., Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer, Cancer Res. 79(2019) P5-4.
    K.T.G. Samarasinghe, C.M. Crews, Targeted protein degradation: A promise for undruggable proteins, Cell Chem. Biol. 28(2021) 934-951.
    M. Békés, D.R. Langley, C.M. Crews, PROTAC targeted protein degraders: The past is prologue, Nat. Rev. Drug Discov. 21(2022) 181-200.
    M.R. Burke, A.R. Smith, G. Zheng, Overcoming cancer drug resistance utilizing PROTAC technology, Front. Cell Dev. Biol. 10(2022), 872729.
    A. Ciechanover, A. Orian, A.L. Schwartz, Ubiquitin-mediated proteolysis: Biological regulation via destruction, BioEssays 22(2000) 442-451.
    A.C. Lai, C.M. Crews, Induced protein degradation: An emerging drug discovery paradigm, Nat. Rev. Drug Discov. 16(2017) 101-114.
    C. Mayor-Ruiz, M.G. Jaeger, S. Bauer, et al., Plasticity of the cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation, Mol. Cell 75(2019) 849-858.
    P. Ottis, C. Palladino, P. Thienger, et al., Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway, ACS Chem. Biol. (2019), 2215-2223.
    R. Shirasaki, G.M. Matthews, S. Gandolfi, et al., Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins, Cell Rep. 34(2021), 108532.
    S. Barrio, U. Munawar, Y. Zhu, et al., IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma, Haematologica 105(2020) 237- 241.
    S. Gooding, N. Ansari-Pour, F. Towfic, et al., Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma, Blood 137(2021) 232-237.
    T. Van Nguyen, USP15 antagonizes CRL4CRBN-mediated ubiquitylation of glutamine synthetase and neosubstrates, Proc. Natl. Acad. Sci. U. S. A. 118(2021) 1-8.
    E. Oh, D. Akopian, M. Rape, Principles of ubiquitin-dependent signaling, Annu. Rev. Cell Dev. Biol. 34(2018) 137-162.
    M. Schapira, M.F. Calabrese, A.N. Bullock, et al., Targeted protein degradation: Expanding the toolbox, Nat. Rev. Drug Discov. 18(2019) 949-963.
    C. Pacini, J.M. Dempster, I. Boyle, et al., Integrated cross-study datasets of genetic dependencies in cancer, Nat. Commun. 12(2021), 1661.
    E.S. Zimmerman, B.A. Schulman, N. Zheng, Structural assembly of cullin-RING ubiquitin ligase complexes, Curr. Opin. Struct. Biol. 20(2010) 714-721.
    D.M. Duda, D.C. Scott, M.F. Calabrese, et al., Structural regulation of cullin-RING ubiquitin ligase complexes, Curr. Opin. Struct. Biol. 21(2011) 257-264.
    K. Baek, D.T. Krist, J.R. Prabu, et al., NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly, Nature 578(2020) 461-466.
    K. Baek, D.C. Scott, B.A. Schulman, NEDD8 and ubiquitin ligation by cullin-RING E3 ligases, Curr. Opin. Struct. Biol. 67(2021) 101-109.
    J. Hines, S. Lartigue, H. Dong, et al., MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53, Cancer Res. 79(2019) 251-262. Journal
    Y. Itoh, M. Ishikawa, M. Naito, et al., Protein knockdown using methyl bestatin-ligand hybrid molecules: Design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins, J. Am. Chem. Soc. 132(2010) 5820-5826.
    J. Liu, J. Ma, Y. Liu, et al., PROTACs: A novel strategy for cancer therapy, Semin. Cancer Biol. 67(2020) 171-179.
    B. Snyder Lawrence, J. Flanagan John, Y. Qian, et al., The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer, Cancer Res. 81(2021) 44.
    T. Suzuki, H. Motohashi, M. Yamamoto, Toward clinical application of the Keap1-Nrf2 pathway, Trends Pharmacol. Sci. 34(2013) 340-346.
    M.C. Jaramillo, D.D. Zhang, The emerging role of the Nrf2-Keap1 signaling pathway in cancer, Genes Dev. 27(2013) 2179-2191.
    M. Lu, J. Ji, Z. Jiang, et al., The Keap1-Nrf2-ARE pathway As a potential preventive and therapeutic target: An update, Med. Res. Rev. 36(2016) 924-963.
    M. Lu, T. Liu, Q. Jiao, et al., Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway, Eur. J. Med. Chem. 146(2018) 251-259.
    M. Xiao, J. Zhao, Q. Wang, et al., Recent advances of degradation technologies based on PROTAC mechanism, Biomolecules 12(2022), 1257.
    S. Moon, B.H. Lee, Chemically induced cellular proteolysis: An emerging therapeutic strategy for undruggable targets, Mol. Cells 41(2018) 933-942.
    C. Tse, A.R. Shoemaker, J. Adickes, et al., ABT-263: A potent and orally bioavailable bcl- 2 family inhibitor, Cancer Res. 68(2008) 3421-3428.
    C.M. Park, M. Bruncko, J. Adickes, et al., Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins, J. Med. Chem. 51(2008) 6902-6915.
    X. Zhang, D. Thummuri, X. Liu, et al., Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity, Eur. J. Med. Chem. 192(2020), 112186.
    K.D. Mason, M.R. Carpinelli, J.I. Fletcher, et al., Programmed anuclear cell death delimits platelet life span, Cell 128(2007) 1173-1186.
    S. Zhang, Y. Chen, Z. Xu, et al., The PROTAC selectively degrading Bcl-xL represents a novel Hedgehog pathway inhibitor with capacity of combating resistance to Smoothened inhibitors while sparing bone growth, Theranostics 12(2022) 7476-7490.
    T. Sawa, M.H. Zaki, T. Okamoto, et al., Protein S-guanylation by the biological signal 8- nitroguanosine 3’, 5’-cyclic monophosphate, Nat. Chem. Biol. 3(2007) 727-735.
    D. Takahashi, J. Moriyama, T. Nakamura, et al., AUTACs: Cargo-specific degraders using selective autophagy, Mol. Cell 76(2019) 797-810.
    T. Lamark, S. Svenning, T. Johansen, Regulation of selective autophagy: The p62/SQSTM1 paradigm, Essays Biochem. 61(2017) 609-624.
    A. Stolz, A. Ernst, I. Dikic, Cargo recognition and trafficking in selective autophagy, Nat. Cell Biol. 16(2014) 495-501.
    E. Chun, C.K. Han, J.H. Yoon, et al., Novel inhibitors targeted to methionine aminopeptidase 2(MetAP2) strongly inhibit the growth of cancers in xenografted nude model, Int. J. Cancer 114(2005) 124-130.
    S. Romano, A. Di Pace, A. Sorrentino, et al., FK506 binding proteins as targets in anticancer therapy, Anti Cancer Agents Med. Chem. 10(2010) 651-656.
    G.E. Winter, D.L. Buckley, J. Paulk, et al., Phthalimide conjugation as a strategy for in vivo target protein degradation, Science 348(2015) 1376-1381.
    D. VanDyke, J.D. Taylor, K.J. Kaeo, et al., Biologics-based degraders—An expanding toolkit for targeted-protein degradation, Curr. Opin. Biotechnol. 78(2022), 102807.
    S.M. Banik, K. Pedram, S. Wisnovsky, et al., Lysosome-targeting chimaeras for degradation of extracellular proteins, Nature 584(2020) 291-297.
    G. Ahn, S.M. Banik, C.L. Miller, et al., LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation, Nat. Chem. Biol. 17(2021) 937-946.
    L. Zhao, J. Zhao, K. Zhong, et al., Targeted protein degradation: Mechanisms, strategies and application, Signal Transduct. Target. Ther. 7(2022), 113.
    Y. Ding, Y. Fei, B. Lu, Emerging new concepts of degrader technologies, Trends Pharmacol. Sci. 41(2020) 464-474.
    M.H. Van Regenmortel, Antigenicity and immunogenicity of synthetic peptides, Biologicals 29(2001) 209-213.
    B. Ramadas, P. Kumar Pain, D. Manna, LYTACs: An emerging tool for the degradation of non-cytosolic proteins, ChemMedChem 16(2021) 2951-2953.
    A.D. Cotton, D.P. Nguyen, J.A. Gramespacher, et al., Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1, J. Am. Chem. Soc. 143(2021) 593-598.
    M. Zebisch, Y. Xu, C. Krastev, et al., Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin, Nat. Commun. 4(2013), 2787.
    A. Beck, L. Goetsch, C. Dumontet, et al., Strategies and challenges for the next generation of antibody-drug conjugates, Nat. Rev. Drug Discov. 16(2017) 315-337.
    H. Zhang, Y. Han, Y. Yang, et al., Covalently engineered nanobody chimeras for targeted membrane protein degradation, J. Am. Chem. Soc. 143(2021) 16377-16382.
    W.P.R. Verdurmen, M. Mazlami, A. Plückthun, A quantitative comparison of cytosolic delivery via different protein uptake systems, Sci. Rep. 7(2017), 13194.
    Y. Han, Y. Da, M. Yu, et al., Protein labeling approach to improve lysosomal targeting and efficacy of antibody-drug conjugates, Org. Biomol. Chem. 18(2020) 3229-3233.
    T. Fang, X. Lu, D. Berger, et al., Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure, Nat. Meth. 15(2018) 1029-1032.
    S. Rana, J.R. Mallareddy, S. Singh, et al., Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase, Cancers 13(2021), 5506.
    D.A. Nalawansha, C.M. Crews, PROTACs: An emerging therapeutic modality in precision medicine, Cell Chem. Biol. 27(2020) 998-1014.
    C. Tian, K. Burgess, PROTAC compatibilities, degrading cell-surface receptors, and the sticky problem of finding a molecular glue, ChemMedChem 16(2021) 316-318.
    C.M. Story, J.E. Mikulska, N.E. Simister, A major histocompatibility complex class I-like Fc receptor cloned from human placenta: Possible role in transfer of immunoglobulin G from mother to fetus, J. Exp. Med. 180(1994) 2377-2381.
    A.P. West Jr, P.J. Bjorkman, Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,), Biochemistry 39(2000) 9698- 9708.
    S.A. Lambert, A. Jolma, L.F. Campitelli, et al., The human transcription factors, Cell 172(2018) 650-665.
    M. Lambert, S. Jambon, S. Depauw, et al., Targeting transcription factors for cancer treatment, Molecules 23(2018), 1479.
    K.T.G. Samarasinghe, S. Jaime-Figueroa, M. Burgess, et al., Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras, Cell Chem. Biol. 28(2021) 648-661.
    W. Wang, S. He, G. Dong, et al., Nucleic-acid-based targeted degradation in drug discovery, J. Med. Chem. 65(2022) 10217-10232.
    Z. Hu, C.M. Crews, Recent developments in PROTAC-mediated protein degradation: From bench to clinic, ChemBioChem 23(2022), e202100270.
    Y. Fang, J. Wang, M. Zhao, et al., Progress and challenges in targeted protein degradation for neurodegenerative disease therapy, J. Med. Chem. 65(2022) 11454-11477.
    X. Li, W. Pu, S. Chen, et al., Therapeutic targeting of RNA-binding protein by RNAPROTAC, Mol. Ther. 29(2021) 1940-1942.
    A. Ghidini, A. Cléry, F. Halloy, et al., RNA-PROTACs: Degraders of RNA-binding proteins, Angew. Chem. 133(2021) 3200-3206.
    J. Liu, H. Chen, H.Ü. Kaniskan, et al., TF-PROTACs enable targeted degradation of transcription factors, J. Am. Chem. Soc. 143(2021) 8902-8910.
    H. Zhu, J. Wang, Q. Zhang, et al., Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance, Pharmacol. Ther. 244(2023), 108371.
    Y. Moon, S.I. Jeon, M.K. Shim, et al., Cancer-specific delivery of proteolysis-targeting chimeras (PROTACs) and their application to cancer immunotherapy, Pharmaceutics 15(2023), 411.
    S. He, F. Gao, J. Ma, et al., Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer, Angew. Chem. 133(2021) 23487-23493.
    R. Liu, Z. Liu, M. Chen, et al., Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy, bioRxiv. 2022.
    R. Fan, X. Tao, X. Zhai, et al., Application of aptamer-drug delivery system in the therapy of breast cancer, Biomed. Pharmacother. 161(2023), 114444.
    S. Khan, Y. He, X. Zhang, et al., PROteolysis TArgeting chimeras (PROTACs) as emerging anticancer therapeutics, Oncogene 39(2020) 4909-4924.
    S. Verma, D. Manna, Controlling PROTACs with light, ChemMedChem 15(2020) 1258- 1261.
    G. Xue, K. Wang, D. Zhou, et al., Light-induced protein degradation with photocaged PROTACs, J. Am. Chem. Soc. 141(2019) 18370-18374.
    P. Pfaff, K.T.G. Samarasinghe, C.M. Crews, et al., Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs, ACS Cent. Sci. 5(2019) 1682-1690.
    J. Liu, Y. Peng, W. Wei, Light-controllable PROTACs for temporospatial control of protein degradation, Front. Cell Dev. Biol. 9(2021), 678077.
    R.M. Stupar, Into the wild: The soybean genome meets its undomesticated relative, Proc. Natl. Acad. Sci. U. S. A. 107(2010) 21947-21948.
    J. Cadet, T. Douki, Oxidatively generated damage to DNA by UVA radiation in cells and human skin, J. Investig. Dermatol. 131(2011) 1005-1007.
    C. Zhao, F.J. Dekker, Novel design strategies to enhance the efficiency of proteolysis targeting chimeras, ACS Pharmacol. Transl. Sci. 5(2022) 710-723.
    J. Liu, H. Chen, Y. Liu, et al., Cancer selective target degradation by folate-caged PROTACs, J. Am. Chem. Soc. 143(2021) 7380-7387.
    N. Yang, B. Kong, Z. Zhu, et al., Recent advances in targeted protein degraders as potential therapeutic agents, Mol. Divers. (2023) 1-25.
    S. Tomoshige, M. Ishikawa, In vivo synthetic chemistry of proteolysis targeting chimeras (PROTACs), Bioorg. Med. Chem. 41(2021), 116221.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (438) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return