Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Yang Yi, Wenzhe Li, Kefang Liu, Heng Xue, Rong Yu, Meng Zhang, Yang-Oujie Bao, Xinyuan Lai, Jingjing Fan, Yuxi Huang, Jing Wang, Xiaomeng Shi, Junhua Li, Hongping Wei, Kuanhui Xiang, Linjie Li, Rong Zhang, Xin Zhao, Xue Qiao, Hang Yang, Min Ye. Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 115-127. doi: 10.1016/j.jpha.2023.05.011
Citation: Yang Yi, Wenzhe Li, Kefang Liu, Heng Xue, Rong Yu, Meng Zhang, Yang-Oujie Bao, Xinyuan Lai, Jingjing Fan, Yuxi Huang, Jing Wang, Xiaomeng Shi, Junhua Li, Hongping Wei, Kuanhui Xiang, Linjie Li, Rong Zhang, Xin Zhao, Xue Qiao, Hang Yang, Min Ye. Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 115-127. doi: 10.1016/j.jpha.2023.05.011

Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation

doi: 10.1016/j.jpha.2023.05.011
Funds:

This work was supported by National Natural Science Foundation of China (Grant Nos.: 81891010/81891011, 81725023, 82003614, 82173950, 31770192, 32070187, 32161133003 and 82003681) and China Postdoctoral Science Foundation (Grant No: 2022T150029). We thank Professor George Fu Gao from CAS Institute of Microbiology for helpful and constructive suggestions. We also thank Tao Du, Lun Wang, Jin Xiong, and the entire running team from Zhengdian Biosafety Level 3 Laboratory of Wuhan Institute of Virology for technical support. We thank the Wroclaw Center for Networking and Super Computing for providing generous computer time, and Jingjie PTM BioLab Co., Ltd. (Hangzhou, China) for proteomics mass spectrometry analysis.

  • Received Date: Feb. 02, 2023
  • Accepted Date: May 18, 2023
  • Rev Recd Date: May 17, 2023
  • Publish Date: May 22, 2023
  • Currently, human health due to corona virus disease 2019 (COVID-19) pandemic has been seriously threatened. The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19. However, the efficacy is compromised by the SARS-CoV-2 evolvement and mutation. Here we report the SARS-CoV-2 S protein receptor-binding domain (RBD) inhibitor licorice-saponin A3 (A3) could widely inhibit RBD of SARS-CoV-2 variants, including Beta, Delta, and Omicron BA.1, XBB and BQ1.1. Furthermore, A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells, with EC50 of 1.016 μM. The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis combined with quantum mechanics/molecular mechanics (QM/MM) simulations. Interestingly, phosphoproteomics analysis and multi fluorescent immunohistochemistry (mIHC) respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase (MAPK) pathways and rebalancing the corresponding immune dysregulation. This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
  • loading
  • [1]
    N. Zhu, D. Zhang, W. Wang, et al., A novel coronavirus from patients with pneumonia in China, N. Engl. J. Med. 382 (2020) 727-733.
    [2]
    World Health Organization, WHO Coronavirus (COVID-19) Dashboard, World Health Organization, 2022. https://covid19.who.int.
    [3]
    K. Xu, L. Dai, G.F. Gao, Humoral and cellular immunity and the safety of COVID-19 vaccines: A summary of data published by 21 May 2021, Int. Immunol. 33 (2021) 529-540.
    [4]
    K. Xu, P. Gao, S. Liu, et al., Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2, Cell 185 (2022) 2265-2278.
    [5]
    J.A. Plante, B.M. Mitchell, K.S. Plante, et al., The variant gambit: COVID-19’s next move, Cell Host Microbe 29 (2021) 508-515.
    [6]
    Y. Wu, F. Wang, C. Shen, et al., A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2, Science 12 (2020) 1274-1278.
    [7]
    L. Dai, G.F. Gao, Viral targets for vaccines against COVID-19, Nat. Rev. Immunol. 21 (2021) 73-82.
    [8]
    A.A.T. Naqvi, K. Fatima, T. Mohammad, et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, Biochim. Biophys. Acta. Mol. Basis Dis. 1866 (2020) 165878.
    [9]
    P. Wang, M. Nair, L. Liu, et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature 593 (2021)130-135.
    [10]
    B. Korber, W.M. Fischer, S. Gnanakaran, et al., Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus, Cell 182 (2020) 812-827.
    [11]
    J.W. Tang, P.A. Tambyah, D.S. Hui, Emergence of a new SARS-CoV-2 variant in the UK, J. Infect. 81 (2021) 27-28.
    [12]
    H. Tegally, E. Wilkinson, M. Giovanetti, et al., Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, MedRxiv. 2020. https://doi.org/10.1101/2020.12.21.20248640.
    [13]
    E.C. Sabino, L.F. Buss, M.P.S. Carvalho, et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet 397 (2021) 452-455.
    [14]
    J. Zhang, T. Xiao, Y. Cai, et al., Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant, Science 374 (2021)1353-1360.
    [15]
    D. Mannar, J.W. Saville, X. Zhu, et al., SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex, Science 375 (2022) 760-764.
    [16]
    D.A. Collier, A. Marco, I.A.T.M. Ferreira, et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies, Nature 608 (2022) 1514.
    [17]
    W.F. Garcia-Beltran, E.C. Lam, K.S. Denis, et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell 184 (2021) 2372-2383.
    [18]
    M. Huang, L. Wu, A. Zheng, et al., Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. 55, Immunity 55 (2022) 1501-1504.
    [19]
    E. Andreano, G. Piccini, D. Licastro, et al., SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma, BioRxiv. 2020. https://doi.org/10.1101/2020.12.28.424451.
    [20]
    L. Espenhain, T. Funk, M. Overvad, et al., Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, Euro Surveill. 26 (2021) 2101146.
    [21]
    M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2020) 271-280.
    [22]
    L. Xing, X. Xu, W. Xu, et al., A five-helix-based SARS-CoV-2 fusion inhibitor targeting heptad repeat 2 domain against SARS-CoV-2 and its variants of concern, Viruses 14 (2022) 597.
    [23]
    H. Sun, Y. Li, P. Liu, et al., Structural basis of HCoV-19 fusion core and an effective inhibition peptide against virus entry, Emerg. Microbes Infect. 9 (2020) 1238-1241.
    [24]
    O. Zenarruzabeitia, G. Astarloa-Pando, I. Terren, et al., T cell Activation, highly armed cytotoxic cells and a shift in, onocytes CD300 receptors expression is characteristic of patients with severe COVID-19, Front. Immunol. 12 (2021) 655934.
    [25]
    P. Georg, R. Astaburuaga-Garcia, L. Bonaguro, et al., Complement activation induces excessive T cell cytotoxicity in severe COVID-19, Cell 185 (2021) 493-512.
    [26]
    M. Cargnello, P.P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. R. 75 (2011) 50-83.
    [27]
    M. Liao, Y. Liu, J. Yuan, et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med. 26 (2020) 842-844.
    [28]
    S. Ji, Z. Li, W. Song, et al. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J Nat. Prod. 79. (2016) 281-292.
    [29]
    Y. Yi, J. Li, X. Lai, et al., Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection, J. Adv. Res. 36 (2022) 201-210.
    [30]
    Y. Yi, M. Zhang, H. Xue, et al., Schaftoside inhibits 3CLpro and PLpro of SARSCoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19, Acta Pharm. Sin. B 12 (2022) 4154-4164.
    [31]
    C. Fenwick, P. Turelli, D. Ni, et al., Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys, Nat. Microbiol. 7 (2022) 1376-1389.
    [32]
    J. Lan, J. Ge, J. Yu, et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (2020) 215-220.
    [33]
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
    [34]
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37 (1998) 785-789.
    [35]
    B. Miehlich, A. Savin, H. Stoll, et al., Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett. 157 (1989) 200-206.
    [36]
    A.D. McLean, G. S.Chandler, Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J. Chem. Phys. 72 (1980) 5639-5648.
    [37]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2009. https://www.gaussian.com.
    [38]
    G.M. Morris, R. Huey, W. Lindstrom, et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791.
    [39]
    A.K. Rappe, C.J. Casewit, K.S. Colwell, et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J Am. Chem. Soc. 114 (1992) 10024-10035.
    [40]
    J.F.W. Chan, K. Kok, Z. Zhu, et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microbes. Infect. 9 (2020) 221-236.
    [41]
    J.B. Xu, S. Zhao, T. Teng, et al., Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses 12 (2020) 244.
    [42]
    J. Cinatl, B. Morgenstern, G. Bauer, et al., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus, Lancet 361 (2003) 2045-2046.
    [43]
    F. Ardito, M. Giuliani, D. Perrone, et al., The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review), Int. J. Mol. Med. 40 (2017) 271-280.
    [44]
    R. Giri, T. Bhardwaj, M. Shegane, et al., Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses, Cell. Mol. Life Sci. 78 (2021) 1655-1688.
    [45]
    Z. Bai, P. Li, J. Wen, et al., Inhibitory effects and mechanisms of the anti-covid-19 traditional Chinese prescription, Keguan-1, on acute lung injury, J. Ethnopharmcol. 285 (2022) 114838.
    [46]
    A. Cuadrado, A.R. Nebreda, Mechanisms and functions of p38 MAPK signaling, Biochem. J. 429 (2010) 403-417.
    [47]
    G.H. Huang, L.Z.C. Shi, H.B. Chi, Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination, Cytokine 48 (2009) 161-169.
    [48]
    F.L. Veerdonk, E. Giamarellos-Bourboulis, P. Pickkers, et al., A guide to immunotherapy for COVID-19, Nat. Med. 28 (2022) 39-50.
    [49]
    E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, et al., Complex immune dysregulation in COVID-19 patients with severe respiratory failure, Cell Host Microbe 27 (2020) 992-1000.
    [50]
    D. Zhao, W. Xu, X. Zhang, et al., Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2, Protein Cell 12 (2021) 734-740.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (185) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return