2024 Vol. 14, No. 1

Review paper
Lipid metabolism analysis in esophageal cancer and associated drug discovery
Ruidi Jiao, Wei Jiang, Kunpeng Xu, Qian Luo, Luhua Wang, Chao Zhao
2024, 14(1): 1-15. doi: 10.1016/j.jpha.2023.08.019
Abstract:
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management
Nguyen Quang Thu, Nguyen Tran Nam Tien, Nguyen Thi Hai Yen, Thuc-Huy Duong, Nguyen Phuoc Long, Huy Truong Nguyen
2024, 14(1): 16-38. doi: 10.1016/j.jpha.2023.09.009
Abstract:
The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
The role of innate immunity in diabetic nephropathy and their therapeutic consequences
Min Yang, Chun Zhang
2024, 14(1): 39-51. doi: 10.1016/j.jpha.2023.09.003
Abstract:
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Original article
Metformin: A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation
Tingting Yang, Jiayu Yuan, Yuting Peng, Jiale Pang, Zhen Qiu, Shangxiu Chen, Yuhan Huang, Zhenzhou Jiang, Yilin Fan, Junjie Liu, Tao Wang, Xueyan Zhou, Sitong Qian, Jinfang Song, Yi Xu, Qian Lu, Xiaoxing Yin
2024, 14(1): 52-68. doi: 10.1016/j.jpha.2023.08.012
Abstract:
The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability
Chen Hong, Yifan Zhang, Lili Yang, Haoyang Xu, Kang Cheng, Zhi Lv, Kaixian Chen, Yiming Li, Huali Wu
2024, 14(1): 69-85. doi: 10.1016/j.jpha.2023.09.006
Abstract:
Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3β (GSK3β)/β-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.
Hydralazine represses Fpn ubiquitination to rescue injured neurons via competitive binding to UBA52
Shengyou Li, Xue Gao, Yi Zheng, Yujie Yang, Jianbo Gao, Dan Geng, Lingli Guo, Teng Ma, Yiming Hao, Bin Wei, Liangliang Huang, Yitao Wei, Bing Xia, Zhuojing Luo, Jinghui Huang
2024, 14(1): 86-99. doi: 10.1016/j.jpha.2023.08.006
Abstract:
A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.
Distinct molecular targets of ProEGCG from EGCG and superior inhibition of angiogenesis signaling pathways for treatment of endometriosis
Sze Wan Hung, Massimiliano Gaetani, Yiran Li, Zhouyurong Tan, Xu Zheng, Ruizhe Zhang, Yang Ding, Gene Chi Wai Man, Tao Zhang, Yi Song, Yao Wang, Jacqueline Pui Wah Chung, Tak Hang Chan, Roman A. Zubarev, Chi Chiu Wang
2024, 14(1): 100-114. doi: 10.1016/j.jpha.2023.09.005
Abstract:
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang Yi, Wenzhe Li, Kefang Liu, Heng Xue, Rong Yu, Meng Zhang, Yang-Oujie Bao, Xinyuan Lai, Jingjing Fan, Yuxi Huang, Jing Wang, Xiaomeng Shi, Junhua Li, Hongping Wei, Kuanhui Xiang, Linjie Li, Rong Zhang, Xin Zhao, Xue Qiao, Hang Yang, Min Ye
2024, 14(1): 115-127. doi: 10.1016/j.jpha.2023.05.011
Abstract:
Currently, human health due to corona virus disease 2019 (COVID-19) pandemic has been seriously threatened. The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19. However, the efficacy is compromised by the SARS-CoV-2 evolvement and mutation. Here we report the SARS-CoV-2 S protein receptor-binding domain (RBD) inhibitor licorice-saponin A3 (A3) could widely inhibit RBD of SARS-CoV-2 variants, including Beta, Delta, and Omicron BA.1, XBB and BQ1.1. Furthermore, A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells, with EC50 of 1.016 μM. The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis combined with quantum mechanics/molecular mechanics (QM/MM) simulations. Interestingly, phosphoproteomics analysis and multi fluorescent immunohistochemistry (mIHC) respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase (MAPK) pathways and rebalancing the corresponding immune dysregulation. This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
A proteomic landscape of pharmacologic perturbations for functional relevance
Zhiwei Liu, Shangwen Jiang, Bingbing Hao, Shuyu Xie, Yingluo Liu, Yuqi Huang, Heng Xu, Cheng Luo, Min Huang, Minjia Tan, Jun-Yu Xu
2024, 14(1): 128-139. doi: 10.1016/j.jpha.2023.08.021
Abstract:
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
Simultaneously quantifying hundreds of acylcarnitines in multiple biological matrices within ten minutes using ultrahigh-performance liquid-chromatography and tandem mass spectrometry
Jingxian Zhang, Qinsheng Chen, Lianglong Zhang, Biru Shi, Men Yu, Qingxia Huang, Huiru Tang
2024, 14(1): 140-148. doi: 10.1016/j.jpha.2023.10.004
Abstract:
Acylcarnitines are metabolic intermediates of fatty acids and branched-chain amino acids having vital biofunctions and pathophysiological significances. Here, we developed a high-throughput method for quantifying hundreds of acylcarnitines in one run using ultrahigh performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). This enabled simultaneous quantification of 1136 acylcarnitines (C0–C26) within 10-min with good sensitivity (limit of detection < 0.7 fmol), linearity (correlation coefficient > 0.992), accuracy (relative error < 20%), precision (coefficient of variation (CV), CV < 15%), stability (CV < 15%), and inter-technician consistency (CV < 20%, n = 6). We also established a quantitative structure-retention relationship (goodness of fit > 0.998) for predicting retention time (tR) of acylcarnitines with no standards and built a database of their multiple reaction monitoring parameters (tR, ion-pairs, and collision energy). Furthermore, we quantified 514 acylcarnitines in human plasma and urine, mouse kidney, liver, heart, lung, and muscle. This provides a rapid method for quantifying acylcarnitines in multiple biological matrices.
Short communication
Identification of different degrees of processed ginger using GC-IMS combined with machine learning
Shuang Liu, Hongjing Dong, Minmin Zhang, Wei Geng, Xiao Wang
2024, 14(1): 149-151. doi: 10.1016/j.jpha.2023.10.005
Abstract:
Platycodin D inhibits angiogenic vascular mimicry in NSCLC by regulating the eIF4E-mediated RNA methylome
Shuyu Zheng, Yanlin Xin, Jiamin Lin, Zejuan Xie, Keyu Cheng, Shanshan Wang, Wenli Lu, Hao Yang, Tianming Lu, Jun Li, Ruogu Qi, Yuanyuan Guo
2024, 14(1): 152-155. doi: 10.1016/j.jpha.2023.10.003
Abstract: