Citation: | Lianhong Yin, Meng Gao, Lina Xu, Yan Qi, Lan Han, Jinyong Peng. Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 760-775. doi: 10.1016/j.jpha.2023.02.002 |
S. Acosta, M. Björck, Modern treatment of acute mesenteric ischaemia, Br. J. Surg. 101 (2014) e100-e108.
|
S.H. Wen, Y.H. Ling, Y. Li, et al., Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase, Surgery 153 (2013) 555-564.
|
H. Yasuhara, Acute mesenteric ischemia: the challenge of gastroenterology, Surg. Today 35 (2005) 185-195.
|
A.N. Shafik, Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats, Dig. Dis. Sci. 58 (2013) 650-659.
|
R. Wu, W. Dong, Z. Wang, et al., Enhancing apoptotic cell clearance mitigates bacterial translocation and promotes tissue repair after gut ischemia-reperfusion injury, Int. J. Mol. Med. 30 (2012) 593-598.
|
H. Jasper, Intestinal stem cell aging: Origins and Interventions, Annu. Rev. Physiol. 82 (2020) 203-226.
|
Y.M. Lee, J.S. Ayres, Decoding the intestinal epithelium cell by cell, Nat. Immunol. 19 (2018) 7-9.
|
V. Snoeck, B. Goddeeris, E. Cox, The role of enterocytes in the intestinal barrier function and antigen uptake, Microbes Infect. 7 (2005) 997-1004.
|
T.E. Adolph, L. Mayr, F. Grabherr, et al., Paneth cells and their antimicrobials in intestinal immunity, Curr. Pharm. Des. 24 (2018) 1121-1129.
|
A.M. Kip, L.J. Ceulemans, I.H.R. Hundscheid, et al., Paneth cell alterations during ischemia-reperfusion, follow-up, and graft rejection after intestinal transplantation, Transplantation 104 (2020) 1952-1958.
|
Y.S. Kim, S.B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr. Gastroenterol. Rep. 12 (2010) 319-330.
|
C.C. Hsu, C.C. Huang, L.H. Chien, et al., Ischemia/reperfusion injured intestinal epithelial cells cause cortical neuron death by releasing exosomal microRNAs associated with apoptosis, necroptosis, and pyroptosis, Sci. Rep. 10 (2020), 14409.
|
G. Tsoulfas, P. Agorastou, Ischemia reperfusion injury and the immune system, J. Surg. Res. 186 (2014) 114-115.
|
G. Chen, B. Ning, T. Shi, Single-cell RNA-seq technologies and related computational data analysis, Front. Genet. 10 (2019), 317.
|
M. Biton, A.L. Haber, N. Rogel, et al., T helper cell cytokines modulate intestinal stem cell renewal and differentiation, Cell 175 (2018) 1307-1320.e22.
|
A. Ayyaz, S. Kumar, B. Sangiorgi, et al., Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell, Nature 569 (2019) 121-125.
|
Z. Wang, R. Sun, G. Wang, et al., SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury, Redox Biol. 28 (2020), 101343.
|
C.J. Chiu, A.H. McArdle, R. Brown, et al., Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal, Arch. Surg. 101 (1970) 478-483.
|
C. Trapnell, A. Roberts, L. Goff, et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (2012) 562-578.
|
S. Anders, P.T. Pyl, W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166-169.
|
A. Reichard, K. Asosingh, Best practices for preparing a single cell suspension from solid tissues for flow cytometry, Cytometry A 95 (2019) 219-226.
|
S. Chen, Y.Q. Zhou, Y.R. Chen, et al., Fastp: An ultra-fast all-in-one FASTQ preprocessor, Bioinform. Oxf. Engl. 34 (2018) i884-i890.
|
C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386.
|
G. Yaari, C.R. Bolen, J. Thakar, et al., Quantitative set analysis for gene expression: A method to quantify gene set differential expression including gene-gene correlations, Nucleic Acids Res. 41 (2013), e170.
|
R. Vento-Tormo, M. Efremova, R.A. Botting, et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563 (2018) 347-353.
|
C. Cosovanu, P. Resch, S. Jordan, et al., Intestinal epithelial c-Maf expression determines enterocyte differentiation and nutrient uptake in mice, J. Exp. Med. 219 (2022), e20220233.
|
J. Iqbal, M.M. Hussain, Intestinal lipid absorption, Am. J. Physiol. Endocrinol. Metab. 296 (2009) E1183-E1194.
|
T. Pelaseyed, J.H. Bergström, J.K. Gustafsson, et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system, Immunol. Rev. 260 (2014) 8-20.
|
Z.H. Chen, L.J. Zhou, L.L. Liu, et al., Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma, Nat. Commun. 11 (2020), 5077.
|
S. Yu, K. Tong, Y. Zhao, et al., Paneth cell multipotency induced by Notch activation following injury, Cell Stem Cell 23 (2018) 46-59.e5.
|
M. Katoh, WNT signaling in stem cell biology and regenerative medicine, Curr. Drug Targets 9 (2008) 565-570.
|
S. Obayashi, J. Horiguchi, T. Higuchi, et al., Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients, Int. J. Oncol. 51 (2017) 781-790.
|
E. Rangel-Huerta, E. Maldonado, Transit-amplifying cells in the fast lane from stem cells towards differentiation, Stem Cells Int. 2017 (2017), 7602951.
|
J. Whitt, V. Woo, P. Lee, et al., Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice, Gastroenterology 155 (2018) 501-513.
|
A.L. Haber, M. Biton, N. Rogel, et al., A single-cell survey of the small intestinal epithelium. Nature 551 (2017) 333-339.
|
Y. Wang, W. Song, J. Wang, et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine, J. Exp. Med. 217 (2020), e20191130.
|
X.Y. Zhang, Z.M. Liu, H.F. Zhang, et al., TGF-beta1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice, J. Cell Mol. Med. 20 (2016) 1014-1023.
|
H. Ito, A. Sadatomo, Y. Inoue, et al., Role of TLR5 in inflammation and tissue damage after intestinal ischemia-reperfusion injury, Biochem. Biophys. Res. Commun. 519 (2019) 15-22.
|
L. Vereecke, R. Beyaert, G. van Loo, Enterocyte death and intestinal barrier maintenance in homeostasis and disease, Trends Mol. Med. 17 (2011) 584-593.
|
C. Gao, L. Xu, W. Chai, et al., Amelioration of intestinal ischemia-reperfusion injury with intraluminal hyperoxygenated solution: Studies on structural and functional changes of enterocyte mitochondria, J. Surg. Res. 129 (2005) 298-305.
|
L.W. Peterson, D. Artis, Intestinal epithelial cells: Regulators of barrier function and immune homeostasis, Nat. Rev. Immunol. 14 (2014) 141-153.
|
S.K. Ramakrishnan, Y.M. Shah, A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis, Nutr. Healthy Aging 4 (2017) 207-216.
|
C. Chen, Y. Yin, Q. Tu, et al., Glucose and amino acid in enterocyte: Absorption, metabolism and maturation, Front. Biosci. (Landmark Ed). 23 (2018) 1721-1739.
|
M.A. Garcia, W.J. Nelson, N. Chavez, Cell-cell junctions organize structural and signaling networks, Cold Spring Harb. Perspect. Biol. 10 (2018), a029181.
|
D.E. Stange, Intestinal stem cells, Dig. Dis. 31 (2013) 293-298.
|
Z. Kabiri, G. Greicius, H. Zaribafzadeh, et al., Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells, J. Clin. Investig. 128 (2018) 3806-3812.
|
C.L. Bevins, N.H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis, Nat. Rev. Microbiol. 9 (2011) 356-368.
|
N. Gassler, Paneth cells in intestinal physiology and pathophysiology, World J. Gastrointest. Pathophysiol. 8 (2017) 150-160.
|
S.R. Lueschow, S.J. McElroy, The paneth cell: The curator and defender of the immature small intestine, Front. Immunol. 11 (2020), 587.
|
H.C. Clevers, C.L. Bevins, Paneth cells: Maestros of the small intestinal crypts, Annu. Rev. Physiol. 75 (2013) 289-311.
|
H.T. Lee, M. Kim, J.Y. Kim, et al., Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury, Am. J. Physiol. Gastrointest. Liver Physiol. 304 (2013) G12-G25.
|
T. Sato, J.H. van Es, H.J. Snippert, et al., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts, Nature 469 (2011) 415-418.
|
J. Ma, B.K. Rubin, J.A. Voynow, Mucins, mucus, and goblet cells, Chest 154 (2018) 169-176.
|
G.M. Birchenough, M.E. Johansson, J.K. Gustafsson, et al., New developments in goblet cell mucus secretion and function, Mucosal. Immunol. 8 (2015) 712-719.
|
Z. Vegh, R.R. Kew, B.L. Gruber, et al., Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR, Mol. Immunol. 43 (2006) 1402-1407.
|
A.M. McGee, D.L. Douglas, Y. Liang, et al., The mitochondrial protein C1qbp promotes cell proliferation, migration and resistance to cell death, Cell Cycle 10 (2011) 4119-4127.
|
A.M. Mowat, W.W. Agace, Regional specialization within the intestinal immune system, Nat. Rev. Immunol. 14 (2014) 667-685.
|
Y. Chen, R. Zander, A. Khatun, et al., Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation, Front. Immunol. 9 (2018), 2826.
|
Q.P. Nguyen, T.Z. Deng, D.A. Witherden, et al., Origins of CD4+ circulating and tissue-resident memory T-cells, Immunology 157 (2019) 3-12.
|
H. Zu, Q. Li, P. Huang, Expression of Treg subsets on intestinal T cell immunity and endotoxin translocation in porcine sepsis after severe burns, Cell Biochem. Biophys. 70 (2014) 1699-1704.
|
M. Sun, C. He, Y. Cong, et al., Regulatory immune cells in regulation of intestinal inflammatory response to microbiota, Mucosal. Immunol. 8 (2015) 969-978.
|
J.N. Lorenz, M. Nieman, J. Sabo, et al., Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load, J. Clin. Invest. 112 (2003) 1244-1254.
|
K.A. Steinbrecher, E. Harmel-Laws, M.P. Garin-Laflam, et al., Murine guanylate cyclase C regulates colonic injury and inflammation, J. Immunol. 186 (2011) 7205-7214.
|
J.A. Rappaport, S.A. Waldman, The guanylate cyclase C-cGMP signaling axis opposes intestinal epithelial injury and neoplasia, Front. Oncol. 8 (2018), 299.
|
C.L. Kraft, J.A. Rappaport, A.E. Snook, et al., GUCY2C maintains intestinal LGR5+ stem cells by opposing ER stress, Oncotarget 8 (2017) 102923-102933.
|
M.Y. Shi, G.H. Duan, S. Nie, et al., Elevated FAM3C promotes cell epithelial-mesenchymal transition and cell migration in gastric cancer, Onco. Targets Ther. 11 (2018) 8491-8505.
|
A. Bendre, K.G. Büki, J.A. Määttä, Fam3c modulates osteogenic differentiation by down-regulating Runx2, Differentiation 93 (2017) 50-57.
|
J.J. Lai, F.M. Cruz, K.L. Rock, Immune sensing of cell death through recognition of histone sequences by C- type lectin-receptor -2d causes inflammation and tissue injury, Immunity 52 (2020) 123-135.e6.
|
C. del Fresno, D. Sancho, Clec2d joins the cell death sensor ranks, Immunity 52 (2020) 6-8.
|
A. Checa-Rojas, L.F. Delgadillo-Silva, M. del Castillo Velasco-Herrera, et al., GSTM3 and GSTP1: Novel players driving tumor progression in cervical cancer, Oncotarget 9 (2018) 21696-21714.
|
S. Wang, J. Yang, L. You, et al., GSTM3 function and polymorphism in cancer: Emerging but promising, Cancer Manag. Res. 12 (2020) 10377-10388.
|