Volume 13 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Lianhong Yin, Meng Gao, Lina Xu, Yan Qi, Lan Han, Jinyong Peng. Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 760-775. doi: 10.1016/j.jpha.2023.02.002
Citation: Lianhong Yin, Meng Gao, Lina Xu, Yan Qi, Lan Han, Jinyong Peng. Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 760-775. doi: 10.1016/j.jpha.2023.02.002

Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine

doi: 10.1016/j.jpha.2023.02.002
  • Received Date: May 23, 2022
  • Accepted Date: Feb. 01, 2023
  • Rev Recd Date: Jan. 12, 2023
  • Publish Date: Feb. 07, 2023
  • Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion (II/R) injury by single-cell RNA sequencing. For enterocyte cells, 11 subclusters were found, in which enterocyte cluster 1 (EC1), enterocyte cluster 3 (EC3), and enterocyte cluster 8 (EC8) were newly discovered cells in ischemia 45 min/reperfusion 720 min (I 45 min/R 720 min) group. EC1 and EC3 played roles in digestion and absorption, and EC8 played a role in cell junctions. For TA cells, after ischemia 45 min/reperfusion 90 min (I 45 min/R 90 min), many TA cells at the stage of proliferation were identified. For Paneth cells, Paneth cluster 3 was observed in the resting state of normal jejunum. After I 45 min/R 90 min, three new subsets were found, in which Paneth cluster 1 had good antigen presentation activity. The main functions of goblet cells were to synthesize and secrete mucus, and a novel subcluster (goblet cluster 5) with highly proliferative ability was discovered in I 45 min/R 90 min group. As a major part of immune system, the changes in T cells with important roles were clarified. Notably, enterocyte cells secreted Guca2b to interact with Gucy2c receptor on the membranes of stem cells, TA cells, Paneth cells, and goblet cells to elicit intercellular communication. One marker known as glutathione S-transferase mu 3 (GSTM3) affected intestinal mucosal barrier function by adjusting mitogen-activated protein kinases (MAPK) signaling during II/R injury. The data on the heterogeneity of intestinal cells, cellular communication and the mechanism of GSTM3 provide a cellular basis for treating II/R injury.
  • loading
  • S. Acosta, M. Björck, Modern treatment of acute mesenteric ischaemia, Br. J. Surg. 101 (2014) e100-e108.
    S.H. Wen, Y.H. Ling, Y. Li, et al., Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase, Surgery 153 (2013) 555-564.
    H. Yasuhara, Acute mesenteric ischemia: the challenge of gastroenterology, Surg. Today 35 (2005) 185-195.
    A.N. Shafik, Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats, Dig. Dis. Sci. 58 (2013) 650-659.
    R. Wu, W. Dong, Z. Wang, et al., Enhancing apoptotic cell clearance mitigates bacterial translocation and promotes tissue repair after gut ischemia-reperfusion injury, Int. J. Mol. Med. 30 (2012) 593-598.
    H. Jasper, Intestinal stem cell aging: Origins and Interventions, Annu. Rev. Physiol. 82 (2020) 203-226.
    Y.M. Lee, J.S. Ayres, Decoding the intestinal epithelium cell by cell, Nat. Immunol. 19 (2018) 7-9.
    V. Snoeck, B. Goddeeris, E. Cox, The role of enterocytes in the intestinal barrier function and antigen uptake, Microbes Infect. 7 (2005) 997-1004.
    T.E. Adolph, L. Mayr, F. Grabherr, et al., Paneth cells and their antimicrobials in intestinal immunity, Curr. Pharm. Des. 24 (2018) 1121-1129.
    A.M. Kip, L.J. Ceulemans, I.H.R. Hundscheid, et al., Paneth cell alterations during ischemia-reperfusion, follow-up, and graft rejection after intestinal transplantation, Transplantation 104 (2020) 1952-1958.
    Y.S. Kim, S.B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr. Gastroenterol. Rep. 12 (2010) 319-330.
    C.C. Hsu, C.C. Huang, L.H. Chien, et al., Ischemia/reperfusion injured intestinal epithelial cells cause cortical neuron death by releasing exosomal microRNAs associated with apoptosis, necroptosis, and pyroptosis, Sci. Rep. 10 (2020), 14409.
    G. Tsoulfas, P. Agorastou, Ischemia reperfusion injury and the immune system, J. Surg. Res. 186 (2014) 114-115.
    G. Chen, B. Ning, T. Shi, Single-cell RNA-seq technologies and related computational data analysis, Front. Genet. 10 (2019), 317.
    M. Biton, A.L. Haber, N. Rogel, et al., T helper cell cytokines modulate intestinal stem cell renewal and differentiation, Cell 175 (2018) 1307-1320.e22.
    A. Ayyaz, S. Kumar, B. Sangiorgi, et al., Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell, Nature 569 (2019) 121-125.
    Z. Wang, R. Sun, G. Wang, et al., SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury, Redox Biol. 28 (2020), 101343.
    C.J. Chiu, A.H. McArdle, R. Brown, et al., Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal, Arch. Surg. 101 (1970) 478-483.
    C. Trapnell, A. Roberts, L. Goff, et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (2012) 562-578.
    S. Anders, P.T. Pyl, W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166-169.
    A. Reichard, K. Asosingh, Best practices for preparing a single cell suspension from solid tissues for flow cytometry, Cytometry A 95 (2019) 219-226.
    S. Chen, Y.Q. Zhou, Y.R. Chen, et al., Fastp: An ultra-fast all-in-one FASTQ preprocessor, Bioinform. Oxf. Engl. 34 (2018) i884-i890.
    C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386.
    G. Yaari, C.R. Bolen, J. Thakar, et al., Quantitative set analysis for gene expression: A method to quantify gene set differential expression including gene-gene correlations, Nucleic Acids Res. 41 (2013), e170.
    R. Vento-Tormo, M. Efremova, R.A. Botting, et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563 (2018) 347-353.
    C. Cosovanu, P. Resch, S. Jordan, et al., Intestinal epithelial c-Maf expression determines enterocyte differentiation and nutrient uptake in mice, J. Exp. Med. 219 (2022), e20220233.
    J. Iqbal, M.M. Hussain, Intestinal lipid absorption, Am. J. Physiol. Endocrinol. Metab. 296 (2009) E1183-E1194.
    T. Pelaseyed, J.H. Bergström, J.K. Gustafsson, et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system, Immunol. Rev. 260 (2014) 8-20.
    Z.H. Chen, L.J. Zhou, L.L. Liu, et al., Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma, Nat. Commun. 11 (2020), 5077.
    S. Yu, K. Tong, Y. Zhao, et al., Paneth cell multipotency induced by Notch activation following injury, Cell Stem Cell 23 (2018) 46-59.e5.
    M. Katoh, WNT signaling in stem cell biology and regenerative medicine, Curr. Drug Targets 9 (2008) 565-570.
    S. Obayashi, J. Horiguchi, T. Higuchi, et al., Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients, Int. J. Oncol. 51 (2017) 781-790.
    E. Rangel-Huerta, E. Maldonado, Transit-amplifying cells in the fast lane from stem cells towards differentiation, Stem Cells Int. 2017 (2017), 7602951.
    J. Whitt, V. Woo, P. Lee, et al., Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice, Gastroenterology 155 (2018) 501-513.
    A.L. Haber, M. Biton, N. Rogel, et al., A single-cell survey of the small intestinal epithelium. Nature 551 (2017) 333-339.
    Y. Wang, W. Song, J. Wang, et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine, J. Exp. Med. 217 (2020), e20191130.
    X.Y. Zhang, Z.M. Liu, H.F. Zhang, et al., TGF-beta1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice, J. Cell Mol. Med. 20 (2016) 1014-1023.
    H. Ito, A. Sadatomo, Y. Inoue, et al., Role of TLR5 in inflammation and tissue damage after intestinal ischemia-reperfusion injury, Biochem. Biophys. Res. Commun. 519 (2019) 15-22.
    L. Vereecke, R. Beyaert, G. van Loo, Enterocyte death and intestinal barrier maintenance in homeostasis and disease, Trends Mol. Med. 17 (2011) 584-593.
    C. Gao, L. Xu, W. Chai, et al., Amelioration of intestinal ischemia-reperfusion injury with intraluminal hyperoxygenated solution: Studies on structural and functional changes of enterocyte mitochondria, J. Surg. Res. 129 (2005) 298-305.
    L.W. Peterson, D. Artis, Intestinal epithelial cells: Regulators of barrier function and immune homeostasis, Nat. Rev. Immunol. 14 (2014) 141-153.
    S.K. Ramakrishnan, Y.M. Shah, A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis, Nutr. Healthy Aging 4 (2017) 207-216.
    C. Chen, Y. Yin, Q. Tu, et al., Glucose and amino acid in enterocyte: Absorption, metabolism and maturation, Front. Biosci. (Landmark Ed). 23 (2018) 1721-1739.
    M.A. Garcia, W.J. Nelson, N. Chavez, Cell-cell junctions organize structural and signaling networks, Cold Spring Harb. Perspect. Biol. 10 (2018), a029181.
    D.E. Stange, Intestinal stem cells, Dig. Dis. 31 (2013) 293-298.
    Z. Kabiri, G. Greicius, H. Zaribafzadeh, et al., Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells, J. Clin. Investig. 128 (2018) 3806-3812.
    C.L. Bevins, N.H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis, Nat. Rev. Microbiol. 9 (2011) 356-368.
    N. Gassler, Paneth cells in intestinal physiology and pathophysiology, World J. Gastrointest. Pathophysiol. 8 (2017) 150-160.
    S.R. Lueschow, S.J. McElroy, The paneth cell: The curator and defender of the immature small intestine, Front. Immunol. 11 (2020), 587.
    H.C. Clevers, C.L. Bevins, Paneth cells: Maestros of the small intestinal crypts, Annu. Rev. Physiol. 75 (2013) 289-311.
    H.T. Lee, M. Kim, J.Y. Kim, et al., Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury, Am. J. Physiol. Gastrointest. Liver Physiol. 304 (2013) G12-G25.
    T. Sato, J.H. van Es, H.J. Snippert, et al., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts, Nature 469 (2011) 415-418.
    J. Ma, B.K. Rubin, J.A. Voynow, Mucins, mucus, and goblet cells, Chest 154 (2018) 169-176.
    G.M. Birchenough, M.E. Johansson, J.K. Gustafsson, et al., New developments in goblet cell mucus secretion and function, Mucosal. Immunol. 8 (2015) 712-719.
    Z. Vegh, R.R. Kew, B.L. Gruber, et al., Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR, Mol. Immunol. 43 (2006) 1402-1407.
    A.M. McGee, D.L. Douglas, Y. Liang, et al., The mitochondrial protein C1qbp promotes cell proliferation, migration and resistance to cell death, Cell Cycle 10 (2011) 4119-4127.
    A.M. Mowat, W.W. Agace, Regional specialization within the intestinal immune system, Nat. Rev. Immunol. 14 (2014) 667-685.
    Y. Chen, R. Zander, A. Khatun, et al., Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation, Front. Immunol. 9 (2018), 2826.
    Q.P. Nguyen, T.Z. Deng, D.A. Witherden, et al., Origins of CD4+ circulating and tissue-resident memory T-cells, Immunology 157 (2019) 3-12.
    H. Zu, Q. Li, P. Huang, Expression of Treg subsets on intestinal T cell immunity and endotoxin translocation in porcine sepsis after severe burns, Cell Biochem. Biophys. 70 (2014) 1699-1704.
    M. Sun, C. He, Y. Cong, et al., Regulatory immune cells in regulation of intestinal inflammatory response to microbiota, Mucosal. Immunol. 8 (2015) 969-978.
    J.N. Lorenz, M. Nieman, J. Sabo, et al., Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load, J. Clin. Invest. 112 (2003) 1244-1254.
    K.A. Steinbrecher, E. Harmel-Laws, M.P. Garin-Laflam, et al., Murine guanylate cyclase C regulates colonic injury and inflammation, J. Immunol. 186 (2011) 7205-7214.
    J.A. Rappaport, S.A. Waldman, The guanylate cyclase C-cGMP signaling axis opposes intestinal epithelial injury and neoplasia, Front. Oncol. 8 (2018), 299.
    C.L. Kraft, J.A. Rappaport, A.E. Snook, et al., GUCY2C maintains intestinal LGR5+ stem cells by opposing ER stress, Oncotarget 8 (2017) 102923-102933.
    M.Y. Shi, G.H. Duan, S. Nie, et al., Elevated FAM3C promotes cell epithelial-mesenchymal transition and cell migration in gastric cancer, Onco. Targets Ther. 11 (2018) 8491-8505.
    A. Bendre, K.G. Büki, J.A. Määttä, Fam3c modulates osteogenic differentiation by down-regulating Runx2, Differentiation 93 (2017) 50-57.
    J.J. Lai, F.M. Cruz, K.L. Rock, Immune sensing of cell death through recognition of histone sequences by C- type lectin-receptor -2d causes inflammation and tissue injury, Immunity 52 (2020) 123-135.e6.
    C. del Fresno, D. Sancho, Clec2d joins the cell death sensor ranks, Immunity 52 (2020) 6-8.
    A. Checa-Rojas, L.F. Delgadillo-Silva, M. del Castillo Velasco-Herrera, et al., GSTM3 and GSTP1: Novel players driving tumor progression in cervical cancer, Oncotarget 9 (2018) 21696-21714.
    S. Wang, J. Yang, L. You, et al., GSTM3 function and polymorphism in cancer: Emerging but promising, Cancer Manag. Res. 12 (2020) 10377-10388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (492) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return