Volume 14 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Mengxin Wang, Stephen Vulcano, Changlu Xu, Renjian Xie, Weijie Peng, Jie Wang, Qiaojun Liu, Lee Jia, Zhi Li, Yumei Li. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 308-320. doi: 10.1016/j.jpha.2023.10.001
Citation: Mengxin Wang, Stephen Vulcano, Changlu Xu, Renjian Xie, Weijie Peng, Jie Wang, Qiaojun Liu, Lee Jia, Zhi Li, Yumei Li. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 308-320. doi: 10.1016/j.jpha.2023.10.001

Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment

doi: 10.1016/j.jpha.2023.10.001
Funds:

This research was funded by the National Natural Science Foundation of China (Grant No.: 82360542)

Jiangxi Provincial Natural Science Foundation, China (Grant Nos.: 20224BAB214030 and 20224BAB216072)

Doctoral Startup Fund of Gannan Medical University, China (Grant Nos.: QD202136 and QD202132)

Science and Technology Planning Projects of Fuzhou, China (Grant No.: 2021FZR0101), and the Natural Science Foundation of Fujian Province, China (Grant No.: 2022YZ0104).

  • Received Date: Jul. 10, 2023
  • Accepted Date: Oct. 07, 2023
  • Rev Recd Date: Sep. 29, 2023
  • Publish Date: Oct. 13, 2023
  • Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
  • loading
  • [1]
    A.R. Elhamamsy, B.J. Metge, H.A. Alsheikh, et al., Ribosome biogenesis:A central player in cancer metastasis and therapeutic resistance, Cancer Res. 82 (2022) 2344-2353.
    [2]
    A. Zisi, J. Bartek, M.S. Lindstrom, Targeting ribosome biogenesis in cancer:Lessons learned and way forward, Cancers (Basel) 14 (2022), 2126.
    [3]
    D. Ruggero, P.P. Pandolfi, Does the ribosome translate cancer? Nat. Rev. Cancer 3 (2003) 179-192.
    [4]
    K. De Keersmaecker, S.O. Sulima, J.D. Dinman, Ribosomopathies and the paradox of cellular hypo- to hyperproliferation, Blood 125 (2015) 1377-1382.
    [5]
    K.L. McCann, S.J. Baserga, Genetics. Mysterious ribosomopathies, Science 341 (2013) 849-850.
    [6]
    A.W. MacInnes, A. Amsterdam, C.A. Whittaker, et al., Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations, Proc. Natl. Acad. Sci. U S A 105 (2008) 10408-10413.
    [7]
    B.P. Alter, N. Giri, S.A. Savage, et al., Cancer in dyskeratosis congenita, Blood 113 (2009) 6549-6557.
    [8]
    J.M. Lipton, C.L.S. Molmenti, P. Desai, et al., Early onset colorectal cancer:An emerging cancer risk in patients with diamond blackfan Anemia, Genes (Basel) 13 (2021), 56.
    [9]
    K. Burger, B. Muhl, T. Harasim, et al., Chemotherapeutic drugs inhibit ribosome biogenesis at various levels, J. Biol. Chem. 285 (2010) 12416-12425.
    [10]
    J. Pelletier, G. Thomas, S. Volarevic, Ribosome biogenesis in cancer:New players and therapeutic avenues, Nat. Rev. Cancer 18 (2018) 51-63.
    [11]
    A. Aspesi, S.R. Ellis, Rare ribosomopathies:Insights into mechanisms of cancer, Nat. Rev. Cancer 19 (2019) 228-238.
    [12]
    K. Dorner, C. Ruggeri, I. Zemp, et al., Ribosome biogenesis factors-from names to functions, EMBO J. 42 (2023), e112699.
    [13]
    M. Penzo, L. Montanaro, D. Trere, et al., The ribosome biogenesis-cancer connection, Cells 8 (2019), 55.
    [14]
    E. Smirnov, N. Chmurciakova, D. Cmarko, Human rDNA and cancer, Cells 10 (2021), 3452.
    [15]
    M.J. Eastham, A. Pelava, G.R. Wells, et al., The induction of p53 correlates with defects in the production, but not the levels, of the small ribosomal subunit and stalled large ribosomal subunit biogenesis, Nucleic Acids Res. 51 (2023) 9397-9414.
    [16]
    M.C. Lafita-Navarro, M. Conacci-Sorrell, Nucleolar stress:From development to cancer, Semin. Cell Dev. Biol. 136 (2023) 64-74.
    [17]
    M. Derenzini, L. Montanaro, D. Trere, What the nucleolus says to a tumour pathologist, Histopathology 54 (2009) 753-762.
    [18]
    OE.H. Hald, L. Olsen, G. Gallo-Oller, et al., Inhibitors of ribosome biogenesis repress the growth of MYCN-amplified neuroblastoma, Oncogene 38 (2019) 2800-2813.
    [19]
    L. Da Costa, T. Leblanc, N. Mohandas, Diamond-blackfan anemia, Blood 136 (2020) 1262-1273.
    [20]
    L. Nacci, Genetics for understanding the clinical features of Shwachman-Diamond Syndrome, Br. J. Haematol. 184 (2019) 710-711.
    [21]
    C.R. Reilly, A. Shimamura, Predisposition to myeloid malignancies in Shwachman-Diamond syndrome:Biological insights and clinical advances, Blood 141 (2023) 1513-1523.
    [22]
    M.M. AlSabbagh, Dyskeratosis congenita:A literature review, J. Dtsch. Dermatol. Ges. 18 (2020) 943-967.
    [23]
    O. Makitie, Cartilage-hair hypoplasia in Finland:Epidemiological and genetic aspects of 107 patients, J. Med. Genet. 29 (1992) 652-655.
    [24]
    A. Pellagatti, J. Boultwood, Recent advances in the 5q- syndrome, Mediterr. J. Hematol. Infect. Dis. 7 (2015), e2015037.
    [25]
    P.A. Trainor, J. Dixon, M.J. Dixon, Treacher Collins syndrome:Etiology, pathogenesis and prevention, Eur. J. Hum. Genet. 17 (2009) 275-283.
    [26]
    N. Danilova, K.M. Sakamoto, S. Lin, Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family, Blood 112 (2008) 5228-5237.
    [27]
    C. Recasens-Alvarez, C. Alexandre, J. Kirkpatrick, et al., Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition, Nat. Cell Biol. 23 (2021) 127-135.
    [28]
    N. Gupta, S. Gaikwad, I. Kaushik, et al., Atovaquone suppresses triple-negative breast tumor growth by reducing immune-suppressive cells, Int. J. Mol. Sci. 22 (2021), 5150.
    [29]
    M.M. Markiewski, S.K. Vadrevu, S.K. Sharma, et al., The ribosomal protein S19 suppresses antitumor immune responses via the complement C5a receptor 1, J. Immunol. 198 (2017) 2989-2999.
    [30]
    K.C. Chen, W.H. Hsu, J.Y. Ho, et al., Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction, J. Food Drug Anal. 26 (2018) 1180-1191.
    [31]
    C. Arthurs, B.N. Murtaza, C. Thomson, et al., Expression of ribosomal proteins in normal and cancerous human prostate tissue, PLoS One 12 (2017), e0186047.
    [32]
    Y. Wang, J. Sui, X. Li, et al., RPS24 knockdown inhibits colorectal cancer cell migration and proliferation in vitro, Gene 571 (2015) 286-291.
    [33]
    Y. Wang, Y. Wu, K. Xiao, et al., RPS24c isoform facilitates tumor angiogenesis via promoting the stability of MVIH in colorectal cancer, Curr. Mol. Med. 20 (2020) 388-395.
    [34]
    H. Li, L. Gao, X. Kang, et al., RPS24 is associated with a poor prognosis and immune infiltration in hepatocellular carcinoma, Int. J. Mol. Sci. 24 (2023), 806.
    [35]
    S. Wang, L. Xia, B. Zhang, et al., Downregulated long intergenic non-coding RNA 00,174 represses malignant biological behaviors of lung cancer cells by regulating microRNA-584-3p/ribosomal protein S24 axis, Funct. Integr. Genomics 22 (2022) 643-653.
    [36]
    D. Tong, J. Zhang, X. Wang, et al., MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription, Oncogenesis 9 (2020), 56.
    [37]
    H. Zhang, J. Liu, Q. Dang, et al., Ribosomal protein RPL5 regulates colon cancer cell proliferation and migration through MAPK/ERK signaling pathway, BMC Mol. Cell Biol. 23 (2022), 48.
    [38]
    P. Robak, D. Jarych, D. Mikulski, et al., The prognostic value of whole-blood PSMB5, CXCR4, POMP, and RPL5 mRNA expression in patients with multiple myeloma treated with bortezomib, Cancers (Basel) 13 (2021), 951.
    [39]
    L. Wu, F. Kou, Z. Ji, et al., SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7, Cell Death Dis. 12 (2021), 439.
    [40]
    Z. Wang, J. Hou, L. Lu, et al., Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways, PLoS One 8 (2013), e79117.
    [41]
    Y. Zhao, Y. Li, R. Zhu, et al., RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m6A modification, Signal Transduct. Target. Ther. 8 (2023), 224.
    [42]
    F. Wu, D. Sun, Y. Liao, et al., RPL35A is a key promotor involved in the development and progression of gastric cancer, Cancer Cell Int. 21 (2021), 497.
    [43]
    C. Li, M. Ge, Y. Yin, et al., Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells, Mol. Cell. Biochem. 370 (2012) 127-139.
    [44]
    M.J. Song, C.K. Jung, C.H. Park, et al., RPL36 as a prognostic marker in hepatocellular carcinoma, Pathol. Int. 61 (2011) 638-644.
    [45]
    Y. Hu, C. Kang, J. Zhao, et al., LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1, J. Cell. Mol. Med. 22 (2018) 497-510.
    [46]
    H. Li, H. Zhang, G. Huang, et al., Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells, J. Exp. Clin. Cancer Res. 41 (2022), 33.
    [47]
    Q. Wang, Y. Cai, X. Fu, et al., High RPS27A expression predicts poor prognosis in patients with HPV type 16 cervical cancer, Front. Oncol. 11 (2021), 752974.
    [48]
    B. Tian, J. Zhou, G. Chen, et al., Downregulation of ZNF280A inhibits proliferation and tumorigenicity of colorectal cancer cells by promoting the ubiquitination and degradation of RPS14, Front. Oncol. 12 (2022), 906281.
    [49]
    S. Hu, J. Cai, H. Fang, et al., RPS14 promotes the development and progression of glioma via p53 signaling pathway, Exp. Cell Res. 423 (2023), 113451.
    [50]
    X. Wang, S. Yao, G. Luo, et al., Downregulation of RPS14 inhibits the proliferation and metastasis of estrogen receptor-positive breast cancer cells, Anticancer Drugs 32 (2021) 1019-1028.
    [51]
    J. Lee, P. Ko, E. You, et al., Shwachman-Bodian-Diamond syndrome protein desensitizes breast cancer cells to apoptosis in stiff matrices by repressing the caspase 8-mediated pathway, Anim. Cells Syst. (Seoul) 23 (2019) 414-421.
    [52]
    K.A. Elsharawy, O.J. Mohammed, M.A. Aleskandarany, et al., The nucleolar-related protein Dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer, Br. J. Cancer 123 (2020) 1543-1552.
    [53]
    H. Yuan, X. Qin, Q. Yang, et al., Dyskerin and telomerase RNA component are sex-differentially associated with outcomes and sunitinib response in patients with clear cell renal cell carcinoma, Biol. Sex Differ. 14 (2023), 46.
    [54]
    G. Kan, Z. Wang, C. Sheng, et al., Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma, J. Transl. Med. 19 (2021), 161.
    [55]
    X. Wu, J. Li, L. Xu, et al., SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1, Cell Death Differ. 30 (2023) 1742-1756.
    [56]
    D. Wang, J. Liufu, Q. Yang, et al., Identification and validation of a novel signature as a diagnostic and prognostic biomarker in colorectal cancer, Biol. Direct 17 (2022), 29.
    [57]
    P. Hou, P. Shi, T. Jiang, et al., DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer, Br. J. Cancer 122 (2020) 668-679.
    [58]
    F.-A. Miao, K. Chu, H.-R. Chen, et al., Author correction:Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion, Invest. New Drugs 40 (2022) 676-678.
    [59]
    M. Zhang, Y. Pan, R. Jiang, et al., DKC1 serves as a potential prognostic biomarker for human clear cell renal cell carcinoma and promotes its proliferation, migration and invasion via the NF-κB pathway, Oncol. Rep. 40 (2018) 968-978.
    [60]
    P. Sieron, C. Hader, J. Hatina, et al., DKC1 overexpression associated with prostate cancer progression, Br. J. Cancer 101 (2009) 1410-1416.
    [61]
    R. O'Brien, S.L. Tran, M.F. Maritz, et al., MYC-driven neuroblastomas are addicted to a telomerase-independent function of dyskerin, Cancer Res. 76 (2016) 3604-3617.
    [62]
    C. Chen, A. Shang, Z. Sun, et al., Urinary exosomal long noncoding RNA TERC as a noninvasive diagnostic and prognostic biomarker for bladder urothelial carcinoma, J. Immunol. Res. 2022 (2022), 9038808.
    [63]
    M. Bakr, M.A. Abd-Elmawla, H. Elimam, et al., Telomerase RNA component lncRNA as potential diagnostic biomarker promotes CRC cellular migration and apoptosis evasion via modulation of β-catenin protein level, Noncoding RNA Res. 8 (2023) 302-314.
    [64]
    A.H. Hopman, W. Theelen, P.P. Hommelberg, et al., Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer, J. Pathol. 210 (2006) 412-419.
    [65]
    M. Lie-A-Ling, C.T. Bakker, T. Deurholt, et al., Selection of tumour specific promoters for adenoviral gene therapy of cholangiocarcinoma, J. Hepatol. 44 (2006) 126-133.
    [66]
    M. Manganelli, I. Grossi, J. Corsi, et al., Expression of cellular and extracellular TERRA, TERC and TERT in hepatocellular carcinoma, Int. J. Mol. Sci. 23 (2022), 6183.
    [67]
    R. Liu, M. Xing, TERT promoter mutations in thyroid cancer, Endocr. Relat. Cancer 23 (2016) R143-R155.
    [68]
    A. Atala, Re:TERT promoter mutations and telomerase reactivation in urothelial cancer, J. Urol. 194 (2015) 848-849.
    [69]
    S. Gandini, I. Zanna, S. De Angelis, et al., TERT promoter mutations and melanoma survival:A comprehensive literature review and meta-analysis, Crit. Rev. Oncol. 160 (2021), 103288.
    [70]
    J. Gomez-Cambronero, Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells, Cancer Metastasis Rev. 37 (2018) 491-507.
    [71]
    P. Maragozidis, E. Papanastasi, D. Scutelnic, et al., Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer:Prognostic value and impact on gene expression, Mol. Cancer 14 (2015), 187.
    [72]
    H.-L. Cao, Z.-J. Liu, P.-L. Huang, et al., lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 1012-1021.
    [73]
    Y. Huang, B. Xie, M. Cao, et al., LncRNA RNA component of mitochondrial RNA-processing endoribonuclease promotes AKT-dependent breast cancer growth and migration by trapping microRNA-206, Front. Cell Dev. Biol. 9 (2021), 730538.
    [74]
    L. Tang, Y. Wang, H. Wang, et al., Long noncoding-RNA component of mitochondrial RNA processing endoribonuclease is involved in the progression of cholangiocarcinoma by regulating microRNA-217, Cancer Sci. 110 (2019) 2166-2179.
    [75]
    Y. Chen, Q. Hao, S. Wang, et al., Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP, Proc. Natl. Acad. Sci. U S A 118 (2021), e2026813118.
    [76]
    H. Zhao, A. Ju, L. Sun, et al., lncRNA RMRP knockdown suppress hepatocellular carcinoma biological activities via regulation miRNA-206/TACR1, J. Cell. Biochem. 121 (2020) 1690-1702.
    [77]
    H. Yin, L. Chen, S. Piao, et al., M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway, Cell Death Differ. 30 (2023) 605-617.
    [78]
    J. Pan, D. Zhang, J. Zhang, et al., LncRNA RMRP silence curbs neonatal neuroblastoma progression by regulating microRNA-206/tachykinin-1 receptor axis via inactivating extracellular signal-regulated kinases, Cancer Biol. Ther. 20 (2019) 653-665.
    [79]
    X. Xiao, Y. Gu, G. Wang, et al., C-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma, Int. J. Biol. Macromol. 122 (2019) 526-537.
    [80]
    J. Hu, Y. Lai, H. Huang, et al., TCOF1 upregulation in triple-negative breast cancer promotes stemness and tumour growth and correlates with poor prognosis, Br. J. Cancer 126 (2022) 57-71.
    [81]
    C. Wu, D. Xia, D. Wang, et al., TCOF1 coordinates oncogenic activation and rRNA production and promotes tumorigenesis in HCC, Cancer Sci. 113 (2022) 553-564.
    [82]
    J.A. Pinto, J. Araujo, N.K. Cardenas, et al., A prognostic signature based on three-genes expression in triple-negative breast tumours with residual disease, NPJ Genom. Med. 1 (2016), 15015.
    [83]
    K.A. Orfali, Y. Ohene-Abuakwa, S.E. Ball, Diamond Blackfan anaemia in the UK:Clinical and genetic heterogeneity, Br. J. Haematol. 125 (2004) 243-252.
    [84]
    J.E. Farrar, A. Vlachos, E. Atsidaftos, et al., Ribosomal protein gene deletions in Diamond-Blackfan anemia, Blood 118 (2011) 6943-6951.
    [85]
    P. Quarello, E. Garelli, A. Carando, et al., Diamond-Blackfan anemia:Genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations, Haematologica 95 (2010) 206-213.
    [86]
    E. Orgebin, F. Lamoureux, B. Isidor, et al., Ribosomopathies:New therapeutic perspectives, Cells 9 (2020), 2080.
    [87]
    H.T. Gazda, M.R. Sheen, A. Vlachos, et al., Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients, Am. J. Hum. Genet. 83 (2008) 769-780.
    [88]
    J.C. Ulirsch, J.M. Verboon, S. Kazerounian, et al., The genetic landscape of Diamond-Blackfan anemia, Am. J. Hum. Genet. 104 (2019), 356.
    [89]
    N. Draptchinskaia, P. Gustavsson, B. Andersson, et al., The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia, Nat. Genet. 21 (1999) 169-175.
    [90]
    T.F. Menne, B. Goyenechea, N. Sanchez-Puig, et al., The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast, Nat. Genet. 39 (2007) 486-495.
    [91]
    N. Kawashima, U. Oyarbide, M. Cipolli, et al., Shwachman-Diamond syndromes:Clinical, genetic, and biochemical insights from the rare variants, Haematologica 108 (2023) 2594-2605.
    [92]
    S. Lee, C.H. Shin, J. Lee, et al., Somatic uniparental disomy mitigates the most damaging EFL1 allele combination in Shwachman-Diamond syndrome, Blood 138 (2021) 2117-2128.
    [93]
    H. Tummala, A.J. Walne, M. Williams, et al., DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation, Am. J. Hum. Genet. 99 (2016) 115-124.
    [94]
    S. Tan, L. Kermasson, A. Hoslin, et al., EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome, Blood 134 (2019) 277-290.
    [95]
    F. Weis, E. Giudice, M. Churcher, et al., Mechanism of eIF6 release from the nascent 60S ribosomal subunit, Nat. Struct. Mol. Biol. 22 (2015) 914-919.
    [96]
    V. Bezzerri, D. Bardelli, J. Morini, et al., Ataluren-driven restoration of Shwachman-Bodian-Diamond syndrome protein function in Shwachman-Diamond syndrome bone marrow cells, Am. J. Hematol. 93 (2018) 527-536.
    [97]
    S. Dhanraj, A. Manji, D. Pinto, et al., Molecular characteristics of a pancreatic adenocarcinoma associated with Shwachman-Diamond syndrome, Pediatr. Blood Cancer 60 (2013) 754-760.
    [98]
    D.A. Kelmenson, M. Hanley, Dyskeratosis congenita, N. Engl. J. Med. 376 (2017), 1460.
    [99]
    M.S. Fernandez Garcia, J. Teruya-Feldstein, The diagnosis and treatment of dyskeratosis congenita:A review, J. Blood Med. 5 (2014) 157-167.
    [100]
    A. Marrone, I. Dokal, Dyskeratosis congenita:Molecular insights into telomerase function, ageing and cancer, Expert Rev. Mol. Med. 6 (2004) 1-23.
    [101]
    V. Mialou, T. Leblanc, R. Peffault de Latour, et al., La dyskeratose congenitale:mise au point Dyskeratosis congenita:An update, Arch. De Pediatr. 20 (2013) 299-306.
    [102]
    D. Ruggero, S. Grisendi, F. Piazza, et al., Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification, Science 299 (2003) 259-262.
    [103]
    A. Marrone, A. Walne, H. Tamary, et al., Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome, Blood 110 (2007) 4198-4205.
    [104]
    G. Venturi, L. Montanaro, How altered ribosome production can cause or contribute to human disease:The spectrum of ribosomopathies, Cells 9 (2020), 2300.
    [105]
    V.A. McKusick, R. Eldridge, J.A. Hostetler, et al., Dwarfism in the Amish. ii. cartilage-hair hypoplasia, Bull. Johns Hopkins Hosp. 116 (1965) 285-326.
    [106]
    K.A. Ganapathi, A. Shimamura, Ribosomal dysfunction and inherited marrow failure, Br. J. Haematol. 141 (2008) 376-387.
    [107]
    M. Taskinen, A. Ranki, E. Pukkala, et al., Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma, Am. J. Med. Genet. A 146A (2008) 2370-2375.
    [108]
    N. Robertson, V. Shchepachev, D. Wright, et al., A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis, Nat. Commun. 13 (2022), 649.
    [109]
    T. Liu, J. Hu, B. Han, et al., A positive feedback loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin signaling regulates the progression and temozolomide resistance in glioma, Cell Death Dis. 12 (2021), 952.
    [110]
    Z. Xie, S. Liu, S. Chu, et al., lncRNA RMRP predicts poor prognosis and mediates tumor progression of esophageal squamous cell carcinoma by regulating miR-613/neuropilin 2 (NRP2) axis, Bioengineered 12 (2021) 6913-6922.
    [111]
    H. Van den Berghe, J.J. Cassiman, G. David, et al., Distinct haematological disorder with deletion of long arm of No. 5 chromosome, Nature 251 (1974) 437-438.
    [112]
    B.L. Ebert, J. Pretz, J. Bosco, et al., Identification of RPS14 as a 5q- syndrome gene by RNA interference screen, Nature 451 (2008) 335-339.
    [113]
    J.W. Vardiman, N.L. Harris, R.D. Brunning, The World Health Organization (WHO) classification of the myeloid neoplasms, Blood 100 (2002) 2292-2302.
    [114]
    E. Treacher-Collins, Case with symmetrical congenital notches in the outer part of each lower lid and defective development of the malar bones, Trans. Opthalmol Soc. U K 20 (1900), 90.
    [115]
    D. Sakai, P.A. Trainor, Treacher Collins syndrome:Unmasking the role of Tcof1/treacle, Int. J. Biochem. Cell Biol. 41 (2009) 1229-1232.
    [116]
    M. Grzanka, A. Piekielko-Witkowska, The role of TCOF1 gene in health and disease:Beyond treacher collins syndrome, Int. J. Mol. Sci. 22 (2021), 2482.
    [117]
    B. Meyer, J.P. Wurm, P. Kotter, et al., The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA, Nucleic Acids Res. 39 (2011) 1526-1537.
    [118]
    J. Li, R. Zhao, Y. Guo, et al., EMG1 interacts with NOP14 to regulate the growth, migration, and invasion of melanoma cells via the Wnt/β-catenin pathway, Transl. Cancer Res. 9 (2020) 3669-3679.
    [119]
    C.J. Bryant, C.F. Lorea, H.L. de Almeida, Jr, et al., Biallelic splicing variants in the nucleolar 60S assembly factor RBM28 cause the ribosomopathy ANE syndrome, Proc. Natl. Acad. Sci. U S A 118 (2021), e2017777118.
    [120]
    X. Lin, L. Zhou, J. Zhong, et al., RNA-binding protein RBM28 can translocate from the nucleolus to the nucleoplasm to inhibit the transcriptional activity of p53, J. Biol. Chem. 298 (2022), 101524.
    [121]
    J.H. Han, G. Ryan, A. Guy, et al., Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder, Hum. Mol. Genet. 31 (2022) 1970-1978.
    [122]
    Z. Liu, Y. Ye, Y. Liu, et al., RNA helicase DHX37 facilitates liver cancer progression by cooperating with PLRG1 to drive superenhancer-mediated transcription of cyclin D1, Cancer Res. 82 (2022) 1937-1952.
    [123]
    K. McElreavey, A. Jorgensen, C. Eozenou, et al., Pathogenic variants in the DEAH-box RNA helicase DHX37 are a frequent cause of 46, XY gonadal dysgenesis and 46,XY testicular regression syndrome, Genet. Med. 22 (2020) 150-159.
    [124]
    M.B. Dong, G. Wang, R.D. Chow, et al., Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells, Cell 178 (2019) 1189-1204.e23.
    [125]
    R.E. Dreggors-Walker, L.N. Cohen, S. Khoshnevis, et al., Studies of mutations of assembly factor Hit1 in budding yeast suggest translation defects as the molecular basis for PEHO syndrome, J. Biol. Chem. 298 (2022), 102261.
    [126]
    A.G. Marneros, BMS1 is mutated in aplasia cutis congenita, PLoS Genet. 9 (2013), e1003573.
    [127]
    A. Bolze, N. Mahlaoui, M. Byun, et al., Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia, Science 340 (2013) 976-978.
    [128]
    Y. Wu, X. Tan, P. Liu, et al., ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways, Exp. Cell Res. 379 (2019) 30-47.
    [129]
    L. Gresseau, M.-E. Roy, S. Duhamel, et al., A signaling crosstalk links SNAIL to the 37/67 kDa laminin-1 receptor ribosomal protein SA and regulates the acquisition of a cancer stem cell molecular signature in U87 glioblastoma neurospheres, Cancers (Basel) 14 (2022), 5944.
    [130]
    N.A. Paolini, M. Attwood, S.B. Sondalle, et al., A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism, Am. J. Hum. Genet. 100 (2017) 506-522.
    [131]
    P. Chagnon, J. Michaud, G. Mitchell, et al., A missense mutation (R565W) in Cirhin (FLJ14728) in North American Indian childhood cirrhosis, Am. J. Hum. Genet. 71 (2002) 1443-1449.
    [132]
    E.F. Freed, J.L. Prieto, K.L. McCann, et al., NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing, PLoS Genet. 8 (2012), e1002892.
    [133]
    E.M. Jenkinson, M.P. Rodero, P.R. Kasher, et al., Corrigendum:Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts, Nat Genet. 49 (2017), 317.
    [134]
    T.T. Nieminen, M.F. O'Donohue, Y. Wu, et al., Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency, Gastroenterology 147 (2014) 595-598.e5.
    [135]
    C. Shen, Z. Chen, Y. Zhang, et al., Biochemical and clinical effects of RPS20 expression in renal clear cell carcinoma, Oncol. Rep. 49 (2023), 22.
    [136]
    J. Shi, L. Zhang, D. Zhou, et al., Biological function of ribosomal protein L10 on cell behavior in human epithelial ovarian cancer, J. Cancer 9 (2018) 745-756.
    [137]
    S.M. Klauck, B. Felder, A. Kolb-Kokocinski, et al., Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism, Mol. Psychiatry 11 (2006) 1073-1084.
    [138]
    K. Wang, S. Chen, Y. Wu, et al., The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma, Cell Death Dis. 14 (2023), 350.
    [139]
    I. Orsolic, S. Bursac, D. Jurada, et al., Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint, Oncogene 39 (2020) 3443-3457.
    [140]
    S.O. Sulima, K. De Keersmaecker, Ribosomal proteins:A novel class of oncogenic drivers, Oncotarget 8 (2017) 89427-89428.
    [141]
    M. Dai, H. Lu, Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5, J. Biol. Chem. 279 (2004) 44475-44482.
    [142]
    W. El Khoury, Z. Nasr, Deregulation of ribosomal proteins in human cancers, Biosci. Rep. 41 (2021), BSR20211577.
    [143]
    I.J.F. Hofman, S. Patchett, M. van Duin, et al., Low frequency mutations in ribosomal proteins RPL10 and RPL5 in multiple myeloma, Haematologica 102 (2017) e317-e320.
    [144]
    I.F. Hofman, M. van Duin, E. De Bruyne, et al., RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response, Leukemia 31 (2017) 1706-1714.
    [145]
    T.N. Willig, N. Draptchinskaia, I. Dianzani, et al., Mutations in ribosomal protein S19 gene and Diamond Blackfan anemia:Wide variations in phenotypic expression, Blood 94 (1999) 4294-4306.
    [146]
    H.T. Gazda, R. Zhong, L. Long, et al., RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations, Br. J. Haematol. 127 (2004) 105-113.
    [147]
    F. Lessard, L. Brakier-Gingras, G. Ferbeyre, Ribosomal proteins control tumor suppressor pathways in response to nucleolar stress, Bioessays 41 (2019), e1800183.
    [148]
    F. Lessard, S. Igelmann, C. Trahan, et al., Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway, Nat. Cell Biol. 20 (2018) 789-799.
    [149]
    Z. Lin, R. Peng, Y. Sun, et al., Identification of ribosomal protein family in triple-negative breast cancer by bioinformatics analysis, Biosci. Rep. 41 (2021), BSR20200869.
    [150]
    A. Yoon, G. Peng, Y. Brandenburger, et al., Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita, Science 312 (2006) 902-906.
    [151]
    A. Angrisani, N. Matrone, V. Belli, et al., A functional connection between dyskerin and energy metabolism, Redox Biol. 14 (2018) 557-565.
    [152]
    C. Bellodi, O. Krasnykh, N. Haynes, et al., Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis, Cancer Res. 70 (2010) 6026-6035.
    [153]
    C. Bellodi, N. Kopmar, D. Ruggero, Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita, EMBO J. 29 (2010) 1865-1876.
    [154]
    Y. Mochizuki, J. He, S. Kulkarni, et al., Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing, Proc. Natl. Acad. Sci. U S A 101 (2004) 10756-10761.
    [155]
    K.E. Schratz, L. Haley, S.K. Danoff, et al., Cancer spectrum and outcomes in the Mendelian short telomere syndromes, Blood 135 (2020) 1946-1956.
    [156]
    E. Ko, J.S. Kim, S. Ju, et al., Oxidatively modified protein-disulfide isomerase-associated 3 promotes dyskerin pseudouridine synthase 1-mediated malignancy and survival of hepatocellular carcinoma cells, Hepatology 68 (2018) 1851-1864.
    [157]
    A.N. Martin, Y. Li, RNase MRP RNA and human genetic diseases, Cell Res. 17 (2007) 219-226.
    [158]
    T.J.M. Welting, W.J. van Venrooij, G.J.M. Pruijn, Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex, Nucleic Acids Res. 32 (2004) 2138-2146.
    [159]
    B.M. Hussen, T. Azimi, H.J. Hidayat, et al., Long non-coding RNA RMRP in the pathogenesis of human disorders, Front. Cell Dev. Biol. 9 (2021), 676588.
    [160]
    K.T. Falcon, K.E.N. Watt, S. Dash, et al., Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development, Proc. Natl. Acad. Sci. U S A 119 (2022), e2116974119.
    [161]
    W. Gu, L. Sun, J. Wang, et al., The oncogenic role of treacle ribosome biogenesis factor 1 (TCOF1) in human tumors:A pan-cancer analysis, Aging (Albany NY) 14 (2022) 943-960.
    [162]
    B.J. Metge, H.A. Alsheikh, D. Chen, et al., Ribosome biosynthesis and Hedgehog activity are cooperative actionable signaling mechanisms in breast cancer following radiotherapy, NPJ Precis. Oncol. 7 (2023), 61.
    [163]
    Q. Hao, J. Wang, Y. Chen, et al., Dual regulation of p53 by the ribosome maturation factor SBDS, Cell Death Dis. 11 (2020), 197.
    [164]
    A. Roychowdhury, C. Joret, G. Bourgeois, et al., The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis, Nucleic Acids Res. 47 (2019) 7548-7563.
    [165]
    P. Choudhury, P. Hackert, I. Memet, et al., The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles, RNA Biol. 16 (2019) 54-68.
    [166]
    Y. Xu, Q. Jiang, H. Liu, et al., DHX37 impacts prognosis of hepatocellular carcinoma and lung adenocarcinoma through immune infiltration, J. Immunol. Res. 2020 (2020), 8835393.
    [167]
    J.N. Griffin, S.B. Sondalle, A. Robson, et al., RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus, Development 145 (2018), dev166181.
    [168]
    T. Lefebvre, P. Rybarczyk, C. Bretaudeau, et al., TRPM7/RPSA complex regulates pancreatic cancer cell migration, Front. Cell Dev. Biol. 8 (2020), 549.
    [169]
    B. Brassart, J. Da Silva, M. Donet, et al., Tumour cell blebbing and extracellular vesicle shedding:Key role of matrikines and ribosomal protein SA, Br. J. Cancer 120 (2019) 453-465.
    [170]
    K. Kuroda, M. Takenoyama, T. Baba, et al., Identification of ribosomal protein L19 as a novel tumor antigen recognized by autologous cytotoxic T lymphocytes in lung adenocarcinoma, Cancer Sci. 101 (2010) 46-53.
    [171]
    A. Khot, N. Brajanovski, D.P. Cameron, et al., First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers:Results of a phase I dose-escalation study, Cancer Discov. 9 (2019) 1036-1049.
    [172]
    F. Catez, N. Dalla Venezia, V. Marcel, et al., Ribosome biogenesis:An emerging druggable pathway for cancer therapeutics, Biochem. Pharmacol. 159 (2019) 74-81.
    [173]
    CX-5461 inhibits RNA Pol I in blood cancers, Cancer Discov. 4 (2014), OF5.
    [174]
    V.C. Figueiredo, J.J. McCarthy, Targeting cancer via ribosome biogenesis:The cachexia perspective, Cell. Mol. Life Sci. 78 (2021) 5775-5787.
    [175]
    R. Ferreira, J.S. Schneekloth Jr, K.I. Panov, et al., Targeting the RNA polymerase I transcription for cancer therapy comes of age, Cells 9 (2020), 266.
    [176]
    A. Polk, M. Vaage-Nilsen, K. Vistisen, et al., Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine:A systematic review of incidence, manifestations and predisposing factors, Cancer Treat. Rev. 39 (2013) 974-984.
    [177]
    S.O. Sulima, K.R. Kampen, K. De Keersmaecker, Cancer biogenesis in ribosomopathies, Cells 8 (2019), 229.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (117) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return