Volume 13 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Jia-Jia Zhang, Chang-Geng Song, Miao Wang, Gai-Qin Zhang, Bin Wang, Xi Chen, Peng Lin, Yu-Meng Zhu, Zhi-Chuan Sun, Ya-Zhou Wang, Jian-Li Jiang, Ling Li, Xiang-Min Yang, Zhi-Nan Chen. Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1135-1152. doi: 10.1016/j.jpha.2023.06.008
Citation: Jia-Jia Zhang, Chang-Geng Song, Miao Wang, Gai-Qin Zhang, Bin Wang, Xi Chen, Peng Lin, Yu-Meng Zhu, Zhi-Chuan Sun, Ya-Zhou Wang, Jian-Li Jiang, Ling Li, Xiang-Min Yang, Zhi-Nan Chen. Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1135-1152. doi: 10.1016/j.jpha.2023.06.008

Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis

doi: 10.1016/j.jpha.2023.06.008
Funds:

This work was supported by the National Basic Research Program of China (Grant No.: 2015CB553701) and the National Science and Technology Major Project, China (Grant No.: 2019ZX09732001).

  • Received Date: Mar. 06, 2023
  • Accepted Date: Jun. 20, 2023
  • Rev Recd Date: May 28, 2023
  • Publish Date: Oct. 30, 2023
  • Morphine is a frequently used analgesic that activates the mu-opioid receptor (MOR), which has prominent side effects of tolerance. Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance, currently, there is no effective therapy to treat morphine tolerance. In the current study, we aimed to develop a monoclonal antibody (mAb) precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms. We successfully prepared a mAb targeting MOR, named 3A5C7, by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization, and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation. Treatment of two cell lines, HEK293T and SH-SY5Y, with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2 (GRK2)/β-arrestin2-dependent mechanism, as demonstrated by immunofluorescence staining, flow cytometry, Western blotting, coimmunoprecipitation, and small interfering ribonucleic acid (siRNA)-based knockdown. This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR. We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid. Western blot, enzyme-linked immunosorbent assays, and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase, the in vitro biomarker of morphine tolerance, via the GRK2/β-arrestin2 pathway. Furthermore, in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice, and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence. Finally, intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/β-arrestin2 pathway. Collectively, our study provided a therapeutic mAb, 3A5C7, targeting MOR to treat morphine tolerance, mediated by enhancing morphine-induced MOR endocytosis. The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.
  • loading
  • H. Breivik, E. Eisenberg, T. O'Brien, The individual and societal burden of chronic pain in Europe: The case for strategic prioritisation and action to improve knowledge and availability of appropriate care, BMC Public Health 13 (2013), 1229.
    G. Corder, D.C. Castro, M.R. Bruchas, et al., Endogenous and exogenous opioids in pain, Annu. Rev. Neurosci. 41 (2018) 453-473.
    D.L. James, M. Jowza, Treating opioid dependence: Pain medicine physiology of tolerance and addiction, Clin. Obstet. Gynecol. 62 (2019) 87-97.
    S. Mercadante, E. Arcuri, A. Santoni, Opioid-induced tolerance and hyperalgesia, CNS Drugs 33 (2019) 943-955.
    O.P. Owodunni, M.H. Zaman, M. Ighani, et al., Opioid tolerance impacts compliance with enhanced recovery pathway after major abdominal surgery, Surgery 166 (2019) 1055-1060.
    P. Gulur, L. Williams, S. Chaudhary, et al., Opioid tolerance - a predictor of increased length of stay and higher readmission rates, Pain Physician 17 (2014) E503-E507.
    S. Mercadante, R.K. Portenoy, Opioid poorly-responsive cancer pain. Part 2: Basic mechanisms that could shift dose response for analgesia, J. Pain Symptom Manage. 21 (2001) 255-264.
    S. Sigismund, S. Confalonieri, A. Ciliberto, et al., Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan, Physiol. Rev. 92 (2012) 273-366.
    P.P.Di Fiore, M.von Zastrow, Endocytosis, signaling, and beyond, Cold Spring Harb. Perspect. Biol. 6 (2014), a016865.
    G.J. Doherty, H.T. McMahon, Mechanisms of endocytosis, Annu. Rev. Biochem. 78 (2009) 857-902.
    C. Pathak, F.U. Vaidya, B.N. Waghela, et al., Insights of endocytosis signaling in health and disease, Int. J. Mol. Sci. 24 (2023), 2971.
    K. Sandvig, B.van Deurs, Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin, Physiol. Rev. 76 (1996) 949-966.
    T. Spielmann, S. Gras, R. Sabitzki, et al., Endocytosis in Plasmodium and Toxoplasma parasites, Trends Parasitol. 36 (2020) 520-532.
    Y. Kojima, J.-P. Volkmer, K. McKenna, et al., CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis, Nature 536 (2016) 86-90.
    I. Khan, P.S. Steeg, Endocytosis: A pivotal pathway for regulating metastasis, Br. J. Cancer 124 (2021) 66-75.
    C. Hall, H. Yu, E. Choi, Insulin receptor endocytosis in the pathophysiology of insulin resistance, Exp. Mol. Med. 52 (2020) 911-920.
    B.L. Heckmann, B.J.W. Teubner, B. Tummers, et al., LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease, Cell 178 (2019) 536-551.e14.
    S. Wang, Historical review: Opiate addiction and opioid receptors, Cell Transplant. 28 (2019) 233-238.
    L. Martini, J.L. Whistler, The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence, Curr. Opin. Neurobiol. 17 (2007) 556-564.
    V.C. Dang, M.J. Christie, Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons, Br. J. Pharmacol. 165 (2012) 1704-1716.
    T. Hashimoto, Y. Saito, K. Yamada, et al., Enhancement of morphine analgesic effect with induction of mu-opioid receptor endocytosis in rats, Anesthesiology 105 (2006) 574-580.
    X. Ma, R. Chen, M. Huang, et al., DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat, Eur. J. Pharmacol. 878 (2020), 173118.
    C.J. Hutchings, A review of antibody-based therapeutics targeting G protein-coupled receptors: An update, Expert Opin. Biol. Ther. 20 (2020) 925-935.
    M.-S. Ju, S.T. Jung, Antigen design for successful isolation of highly challenging therapeutic anti-GPCR antibodies, Int. J. Mol. Sci. 21 (2020), 8240.
    M. Jo, S.T. Jung, Engineering therapeutic antibodies targeting G-protein-coupled receptors, Exp. Mol. Med. 48 (2016), e207.
    J.-J. Zhang, C.-G. Song, J.-M. Dai, et al., Inhibition of mu-opioid receptor suppresses proliferation of hepatocellular carcinoma cells via CD147-p53-MAPK cascade signaling pathway, Am. J. Transl. Res. 13 (2021) 3967-3986.
    F. Li, H. Ma, N. Wu, et al., IRAS modulates opioid tolerance and dependence by regulating μ opioid receptor trafficking, Mol. Neurobiol. 53 (2016) 4918-4930.
    P. Yang, X. Luo, J. Li, et al., Ionizing radiation upregulates glutamine metabolism and induces cell death via accumulation of reactive oxygen species, Oxid. Med. Cell. Longev. 2021 (2021), 5826932.
    S. Liu, Q. Wang, Z. Li, et al., TRPV1 Channel activated by the PGE2/EP4 pathway mediates spinal hypersensitivity in a mouse model of vertebral endplate degeneration, Oxid. Med. Cell. Longev. 2021 (2021), 9965737.
    M.K. Kaushik, K. Aritake, A. Imanishi, et al., Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy, Proc. Natl. Acad. Sci. U S A 115 (2018) 6046-6051.
    C.R. Lin, M.H. Tai, J.T. Cheng, et al., Electroporation for direct spinal gene transfer in rats, Neurosci. Lett. 317 (2002) 1-4.
    M. Marsala, A.B. Malmberg, T.L. Yaksh, The spinal loop dialysis catheter: Characterization of use in the unanesthetized rat, J. Neurosci. Methods 62 (1995) 43-53.
    Y.-C. Chen, C.-F. Chiang, L.-F. Chen, et al., Polymersomes conjugated with des-octanoyl ghrelin for the delivery of therapeutic and imaging agents into brain tissues, Biomaterials 35 (2014) 2051-2065.
    J.-J. Zhang, C.-G. Song, J.-M. Dai, et al., Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor, MedComm (2020) 3 (2022), e148.
    T.F. Gamage, B.M. Ignatowska-Jankowska, P.P. Muldoon, et al., Differential effects of endocannabinoid catabolic inhibitors on morphine withdrawal in mice, Drug Alcohol Depend. 146 (2015) 7-16.
    B. Kest, C.A. Palmese, E. Hopkins, et al., Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: Evidence for common genetic mechanisms in acute and chronic morphine physical dependence, Neuroscience 115 (2002) 463-469.
    P.-K. Chao, H.-F. Chang, L.-C. Ou, et al., Convallatoxin enhance the ligand-induced mu-opioid receptor endocytosis and attenuate morphine antinociceptive tolerance in mice, Sci. Rep. 9 (2019), 2405.
    J. Ma, X. Yuan, H. Qu, et al., The role of reactive oxygen species in morphine addiction of SH-SY5Y cells, Life Sci. 124 (2015) 128-135.
    C.J. Hutchings, M. Koglin, W.C. Olson, et al., Opportunities for therapeutic antibodies directed at G-protein-coupled receptors, Nat. Rev. Drug Discov. 16 (2017), 661.
    P. Chan, K. Lutfy, Molecular changes in opioid addiction: The role of adenylyl cyclase and cAMP/PKA system, Prog. Mol. Biol. Transl. Sci. 137 (2016) 203-227.
    R. Binsack, M.-L. Zheng, Z.-S. Zhang, et al., Chronic morphine drinking establishes morphine tolerance, but not addiction in Wistar rats, J. Zhejiang Univ. Sci. B 7 (2006) 892-898.
    L.A. Colvin, F. Bull, T.G. Hales, Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia, Lancet 393 (2019) 1558-1568.
    R. Benyamin, A.M. Trescot, S. Datta, et al., Opioid complications and side effects, Pain Physician 11 (2008) S105-S120.
    J.T. Williams, S.L. Ingram, G. Henderson, et al., Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance, Pharmacol. Rev. 65 (2013) 223-254.
    A. Kovoor, J.P. Celver, A. Wu, et al., Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy, Mol. Pharmacol. 54 (1998) 704-711.
    C.E. Groer, C.L. Schmid, A.M. Jaeger, et al., Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation, J. Biol. Chem. 286 (2011) 31731-31741.
    C. Stein, Opioid receptors, Annu. Rev. Med. 67 (2016) 433-451.
    D.E. Keith, S.R. Murray, P.A. Zaki, et al., Morphine activates opioid receptors without causing their rapid internalization, J. Biol. Chem. 271 (1996) 19021-19024.
    C. Sternini, M. Spann, B. Anton, et al., Agonist-selective endocytosis of mu opioid receptor by neurons in vivo, Proc. Natl. Acad. Sci. U S A 93 (1996) 9241-9246.
    T. Koch, V. Hollt, Role of receptor internalization in opioid tolerance and dependence, Pharmacol. Ther. 117 (2008) 199-206.
    J.L. Whistler, M.von Zastrow, Morphine-activated opioid receptors elude desensitization by beta-arrestin, Proc. Natl. Acad. Sci. U S A 95 (1998) 9914-9919.
    J. Zhang, S.S. Ferguson, L.S. Barak, et al., Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness, Proc. Natl. Acad. Sci. U S A 95 (1998) 7157-7162.
    L. He, J. Fong, M.von Zastrow, et al., Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization, Cell 108 (2002) 271-282.
    J.A. Kim, S. Bartlett, L. He, et al., Morphine-induced receptor endocytosis in a novel knockin mouse reduces tolerance and dependence, Curr. Biol. 18 (2008) 129-135.
    B. Wang, C.-J. Su, T.-T. Liu, et al., The neuroprotection of low-dose morphine in cellular and animal models of parkinson’s disease through ameliorating endoplasmic reticulum (ER) stress and activating autophagy, Front. Mol. Neurosci. 11 (2018), 120.
    F. Rostami, S. Oryan, A. Ahmadiani, et al., Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit, J. Mol. Neurosci. 48 (2012) 22-34.
    M. Arabian, N. Aboutaleb, M. Soleimani, et al., Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice, Iran. J. Basic Med. Sci. 18 (2015) 14-21.
    V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, et al., Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis, Biofactors 35 (2009) 146-160.
    E.J. Calabrese, M.P. Mattson, G. Dhawan, et al., Hormesis: A potential strategic approach to the treatment of neurodegenerative disease, Int. Rev. Neurobiol. 155 (2020) 271-301.
    E.J. Calabrese, Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks, Pharmacol. Res. 110 (2016) 265-275.
    V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, et al., Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders, Antioxid. Redox Signal. 13 (2010) 1763-1811.
    V. Calabrese, C. Cornelius, C. Mancuso, et al., Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases, Front. Biosci. (Landmark Ed.) 14 (2009) 376-397.
    D. Gems, L. Partridge, Stress-response hormesis and aging: “That which does not kill us makes us stronger”, Cell Metab. 7 (2008) 200-203.
    E. Agathokleous, M. Kitao, E.J. Calabrese, Hormesis: Highly generalizable and beyond laboratory, Trends Plant Sci. 25 (2020) 1076-1086.
    E.J. Calabrese, Hormesis mediates acquired resilience: Using plant-derived chemicals to enhance health, Annu. Rev. Food Sci. Technol. 12 (2021) 355-381.
    V. Calabrese, C. Mancuso, M. Calvani, et al., Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity, Nat. Rev. Neurosci. 8 (2007) 766-775.
    R. Siracusa, M. Scuto, R. Fusco, et al., Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced Parkinson’s disease in mice, Antioxidants (Basel) 9 (2020), 824.
    J. Skrabalova, Z. Drastichova, J. Novotny, Morphine as a potential oxidative stress-causing agent, Mini Rev. Org. Chem. 10 (2013) 367-372.
    A.O. Abdel-Zaher, M.G. Mostafa, H.S. Farghaly, et al., Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid, Behav. Brain Res. 247 (2013) 17-26.
    R. Li, G.T. Wong, T.M. Wong, et al., Intrathecal morphine preconditioning induces cardioprotection via activation of delta, kappa, and mu opioid receptors in rats, Anesth. Analg. 108 (2009) 23-29.
    M. Dorsch, F. Behmenburg, M. Raible, et al., Morphine-induced preconditioning: Involvement of protein kinase A and mitochondrial permeability transition pore, PLoS One 11 (2016), e0151025.
    M. Arabian, N. Aboutaleb, M. Soleimani, et al., Preconditioning with morphine protects hippocampal CA1 neurons from ischemia-reperfusion injury via activation of the mTOR pathway, Can. J. Physiol. Pharmacol. 96 (2018) 80-87.
    M. Arabian, N. Aboutaleb, M. Soleimani, et al., Activation of mitochondrial KATP channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia, Adv. Med. Sci. 63 (2018) 213-219.
    M.-S. Gwak, L. Li, Z. Zuo, Morphine preconditioning reduces lipopolysaccharide and interferon-gamma-induced mouse microglial cell injury via delta 1 opioid receptor activation, Neuroscience 167 (2010) 256-260.
    X. He, P. Ou, K. Wu, et al., Resveratrol attenuates morphine antinociceptive tolerance via SIRT1 regulation in the rat spinal cord, Neurosci. Lett. 566 (2014) 55-60.
    S. Reymond, T. Vujic, D. Schvartz, et al., Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells, Sci. Rep. 12 (2022), 4588.
    K. Palczewski, T. Kumasaka, T. Hori, et al., Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289 (2000) 739-745.
    E. Dolgin, First GPCR-directed antibody passes approval milestone, Nat. Rev. Drug Discov. 17 (2018) 457-459.
    Y.L. Kasamon, H. Chen, R.A.de Claro, et al., FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and Sezary syndrome, Clin. Cancer Res. 25 (2019) 7275-7280.
    W. Huang, A. Manglik, A.J. Venkatakrishnan, et al., Structural insights into μ-opioid receptor activation, Nature 524 (2015) 315-321.
    S. Kaneko, S. Imai, N. Asao, et al., Activation mechanism of the μ-opioid receptor by an allosteric modulator, Proc. Natl. Acad. Sci. U S A 119 (2022), e2121918119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (321) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return