Citation: | Jia-Jia Zhang, Chang-Geng Song, Miao Wang, Gai-Qin Zhang, Bin Wang, Xi Chen, Peng Lin, Yu-Meng Zhu, Zhi-Chuan Sun, Ya-Zhou Wang, Jian-Li Jiang, Ling Li, Xiang-Min Yang, Zhi-Nan Chen. Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1135-1152. doi: 10.1016/j.jpha.2023.06.008 |
H. Breivik, E. Eisenberg, T. O'Brien, The individual and societal burden of chronic pain in Europe: The case for strategic prioritisation and action to improve knowledge and availability of appropriate care, BMC Public Health 13 (2013), 1229.
|
G. Corder, D.C. Castro, M.R. Bruchas, et al., Endogenous and exogenous opioids in pain, Annu. Rev. Neurosci. 41 (2018) 453-473.
|
D.L. James, M. Jowza, Treating opioid dependence: Pain medicine physiology of tolerance and addiction, Clin. Obstet. Gynecol. 62 (2019) 87-97.
|
S. Mercadante, E. Arcuri, A. Santoni, Opioid-induced tolerance and hyperalgesia, CNS Drugs 33 (2019) 943-955.
|
O.P. Owodunni, M.H. Zaman, M. Ighani, et al., Opioid tolerance impacts compliance with enhanced recovery pathway after major abdominal surgery, Surgery 166 (2019) 1055-1060.
|
P. Gulur, L. Williams, S. Chaudhary, et al., Opioid tolerance - a predictor of increased length of stay and higher readmission rates, Pain Physician 17 (2014) E503-E507.
|
S. Mercadante, R.K. Portenoy, Opioid poorly-responsive cancer pain. Part 2: Basic mechanisms that could shift dose response for analgesia, J. Pain Symptom Manage. 21 (2001) 255-264.
|
S. Sigismund, S. Confalonieri, A. Ciliberto, et al., Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan, Physiol. Rev. 92 (2012) 273-366.
|
P.P.Di Fiore, M.von Zastrow, Endocytosis, signaling, and beyond, Cold Spring Harb. Perspect. Biol. 6 (2014), a016865.
|
G.J. Doherty, H.T. McMahon, Mechanisms of endocytosis, Annu. Rev. Biochem. 78 (2009) 857-902.
|
C. Pathak, F.U. Vaidya, B.N. Waghela, et al., Insights of endocytosis signaling in health and disease, Int. J. Mol. Sci. 24 (2023), 2971.
|
K. Sandvig, B.van Deurs, Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin, Physiol. Rev. 76 (1996) 949-966.
|
T. Spielmann, S. Gras, R. Sabitzki, et al., Endocytosis in Plasmodium and Toxoplasma parasites, Trends Parasitol. 36 (2020) 520-532.
|
Y. Kojima, J.-P. Volkmer, K. McKenna, et al., CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis, Nature 536 (2016) 86-90.
|
I. Khan, P.S. Steeg, Endocytosis: A pivotal pathway for regulating metastasis, Br. J. Cancer 124 (2021) 66-75.
|
C. Hall, H. Yu, E. Choi, Insulin receptor endocytosis in the pathophysiology of insulin resistance, Exp. Mol. Med. 52 (2020) 911-920.
|
B.L. Heckmann, B.J.W. Teubner, B. Tummers, et al., LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease, Cell 178 (2019) 536-551.e14.
|
S. Wang, Historical review: Opiate addiction and opioid receptors, Cell Transplant. 28 (2019) 233-238.
|
L. Martini, J.L. Whistler, The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence, Curr. Opin. Neurobiol. 17 (2007) 556-564.
|
V.C. Dang, M.J. Christie, Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons, Br. J. Pharmacol. 165 (2012) 1704-1716.
|
T. Hashimoto, Y. Saito, K. Yamada, et al., Enhancement of morphine analgesic effect with induction of mu-opioid receptor endocytosis in rats, Anesthesiology 105 (2006) 574-580.
|
X. Ma, R. Chen, M. Huang, et al., DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat, Eur. J. Pharmacol. 878 (2020), 173118.
|
C.J. Hutchings, A review of antibody-based therapeutics targeting G protein-coupled receptors: An update, Expert Opin. Biol. Ther. 20 (2020) 925-935.
|
M.-S. Ju, S.T. Jung, Antigen design for successful isolation of highly challenging therapeutic anti-GPCR antibodies, Int. J. Mol. Sci. 21 (2020), 8240.
|
M. Jo, S.T. Jung, Engineering therapeutic antibodies targeting G-protein-coupled receptors, Exp. Mol. Med. 48 (2016), e207.
|
J.-J. Zhang, C.-G. Song, J.-M. Dai, et al., Inhibition of mu-opioid receptor suppresses proliferation of hepatocellular carcinoma cells via CD147-p53-MAPK cascade signaling pathway, Am. J. Transl. Res. 13 (2021) 3967-3986.
|
F. Li, H. Ma, N. Wu, et al., IRAS modulates opioid tolerance and dependence by regulating μ opioid receptor trafficking, Mol. Neurobiol. 53 (2016) 4918-4930.
|
P. Yang, X. Luo, J. Li, et al., Ionizing radiation upregulates glutamine metabolism and induces cell death via accumulation of reactive oxygen species, Oxid. Med. Cell. Longev. 2021 (2021), 5826932.
|
S. Liu, Q. Wang, Z. Li, et al., TRPV1 Channel activated by the PGE2/EP4 pathway mediates spinal hypersensitivity in a mouse model of vertebral endplate degeneration, Oxid. Med. Cell. Longev. 2021 (2021), 9965737.
|
M.K. Kaushik, K. Aritake, A. Imanishi, et al., Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy, Proc. Natl. Acad. Sci. U S A 115 (2018) 6046-6051.
|
C.R. Lin, M.H. Tai, J.T. Cheng, et al., Electroporation for direct spinal gene transfer in rats, Neurosci. Lett. 317 (2002) 1-4.
|
M. Marsala, A.B. Malmberg, T.L. Yaksh, The spinal loop dialysis catheter: Characterization of use in the unanesthetized rat, J. Neurosci. Methods 62 (1995) 43-53.
|
Y.-C. Chen, C.-F. Chiang, L.-F. Chen, et al., Polymersomes conjugated with des-octanoyl ghrelin for the delivery of therapeutic and imaging agents into brain tissues, Biomaterials 35 (2014) 2051-2065.
|
J.-J. Zhang, C.-G. Song, J.-M. Dai, et al., Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor, MedComm (2020) 3 (2022), e148.
|
T.F. Gamage, B.M. Ignatowska-Jankowska, P.P. Muldoon, et al., Differential effects of endocannabinoid catabolic inhibitors on morphine withdrawal in mice, Drug Alcohol Depend. 146 (2015) 7-16.
|
B. Kest, C.A. Palmese, E. Hopkins, et al., Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: Evidence for common genetic mechanisms in acute and chronic morphine physical dependence, Neuroscience 115 (2002) 463-469.
|
P.-K. Chao, H.-F. Chang, L.-C. Ou, et al., Convallatoxin enhance the ligand-induced mu-opioid receptor endocytosis and attenuate morphine antinociceptive tolerance in mice, Sci. Rep. 9 (2019), 2405.
|
J. Ma, X. Yuan, H. Qu, et al., The role of reactive oxygen species in morphine addiction of SH-SY5Y cells, Life Sci. 124 (2015) 128-135.
|
C.J. Hutchings, M. Koglin, W.C. Olson, et al., Opportunities for therapeutic antibodies directed at G-protein-coupled receptors, Nat. Rev. Drug Discov. 16 (2017), 661.
|
P. Chan, K. Lutfy, Molecular changes in opioid addiction: The role of adenylyl cyclase and cAMP/PKA system, Prog. Mol. Biol. Transl. Sci. 137 (2016) 203-227.
|
R. Binsack, M.-L. Zheng, Z.-S. Zhang, et al., Chronic morphine drinking establishes morphine tolerance, but not addiction in Wistar rats, J. Zhejiang Univ. Sci. B 7 (2006) 892-898.
|
L.A. Colvin, F. Bull, T.G. Hales, Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia, Lancet 393 (2019) 1558-1568.
|
R. Benyamin, A.M. Trescot, S. Datta, et al., Opioid complications and side effects, Pain Physician 11 (2008) S105-S120.
|
J.T. Williams, S.L. Ingram, G. Henderson, et al., Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance, Pharmacol. Rev. 65 (2013) 223-254.
|
A. Kovoor, J.P. Celver, A. Wu, et al., Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy, Mol. Pharmacol. 54 (1998) 704-711.
|
C.E. Groer, C.L. Schmid, A.M. Jaeger, et al., Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation, J. Biol. Chem. 286 (2011) 31731-31741.
|
C. Stein, Opioid receptors, Annu. Rev. Med. 67 (2016) 433-451.
|
D.E. Keith, S.R. Murray, P.A. Zaki, et al., Morphine activates opioid receptors without causing their rapid internalization, J. Biol. Chem. 271 (1996) 19021-19024.
|
C. Sternini, M. Spann, B. Anton, et al., Agonist-selective endocytosis of mu opioid receptor by neurons in vivo, Proc. Natl. Acad. Sci. U S A 93 (1996) 9241-9246.
|
T. Koch, V. Hollt, Role of receptor internalization in opioid tolerance and dependence, Pharmacol. Ther. 117 (2008) 199-206.
|
J.L. Whistler, M.von Zastrow, Morphine-activated opioid receptors elude desensitization by beta-arrestin, Proc. Natl. Acad. Sci. U S A 95 (1998) 9914-9919.
|
J. Zhang, S.S. Ferguson, L.S. Barak, et al., Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness, Proc. Natl. Acad. Sci. U S A 95 (1998) 7157-7162.
|
L. He, J. Fong, M.von Zastrow, et al., Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization, Cell 108 (2002) 271-282.
|
J.A. Kim, S. Bartlett, L. He, et al., Morphine-induced receptor endocytosis in a novel knockin mouse reduces tolerance and dependence, Curr. Biol. 18 (2008) 129-135.
|
B. Wang, C.-J. Su, T.-T. Liu, et al., The neuroprotection of low-dose morphine in cellular and animal models of parkinson’s disease through ameliorating endoplasmic reticulum (ER) stress and activating autophagy, Front. Mol. Neurosci. 11 (2018), 120.
|
F. Rostami, S. Oryan, A. Ahmadiani, et al., Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit, J. Mol. Neurosci. 48 (2012) 22-34.
|
M. Arabian, N. Aboutaleb, M. Soleimani, et al., Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice, Iran. J. Basic Med. Sci. 18 (2015) 14-21.
|
V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, et al., Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis, Biofactors 35 (2009) 146-160.
|
E.J. Calabrese, M.P. Mattson, G. Dhawan, et al., Hormesis: A potential strategic approach to the treatment of neurodegenerative disease, Int. Rev. Neurobiol. 155 (2020) 271-301.
|
E.J. Calabrese, Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks, Pharmacol. Res. 110 (2016) 265-275.
|
V. Calabrese, C. Cornelius, A.T. Dinkova-Kostova, et al., Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders, Antioxid. Redox Signal. 13 (2010) 1763-1811.
|
V. Calabrese, C. Cornelius, C. Mancuso, et al., Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases, Front. Biosci. (Landmark Ed.) 14 (2009) 376-397.
|
D. Gems, L. Partridge, Stress-response hormesis and aging: “That which does not kill us makes us stronger”, Cell Metab. 7 (2008) 200-203.
|
E. Agathokleous, M. Kitao, E.J. Calabrese, Hormesis: Highly generalizable and beyond laboratory, Trends Plant Sci. 25 (2020) 1076-1086.
|
E.J. Calabrese, Hormesis mediates acquired resilience: Using plant-derived chemicals to enhance health, Annu. Rev. Food Sci. Technol. 12 (2021) 355-381.
|
V. Calabrese, C. Mancuso, M. Calvani, et al., Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity, Nat. Rev. Neurosci. 8 (2007) 766-775.
|
R. Siracusa, M. Scuto, R. Fusco, et al., Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced Parkinson’s disease in mice, Antioxidants (Basel) 9 (2020), 824.
|
J. Skrabalova, Z. Drastichova, J. Novotny, Morphine as a potential oxidative stress-causing agent, Mini Rev. Org. Chem. 10 (2013) 367-372.
|
A.O. Abdel-Zaher, M.G. Mostafa, H.S. Farghaly, et al., Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid, Behav. Brain Res. 247 (2013) 17-26.
|
R. Li, G.T. Wong, T.M. Wong, et al., Intrathecal morphine preconditioning induces cardioprotection via activation of delta, kappa, and mu opioid receptors in rats, Anesth. Analg. 108 (2009) 23-29.
|
M. Dorsch, F. Behmenburg, M. Raible, et al., Morphine-induced preconditioning: Involvement of protein kinase A and mitochondrial permeability transition pore, PLoS One 11 (2016), e0151025.
|
M. Arabian, N. Aboutaleb, M. Soleimani, et al., Preconditioning with morphine protects hippocampal CA1 neurons from ischemia-reperfusion injury via activation of the mTOR pathway, Can. J. Physiol. Pharmacol. 96 (2018) 80-87.
|
M. Arabian, N. Aboutaleb, M. Soleimani, et al., Activation of mitochondrial KATP channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia, Adv. Med. Sci. 63 (2018) 213-219.
|
M.-S. Gwak, L. Li, Z. Zuo, Morphine preconditioning reduces lipopolysaccharide and interferon-gamma-induced mouse microglial cell injury via delta 1 opioid receptor activation, Neuroscience 167 (2010) 256-260.
|
X. He, P. Ou, K. Wu, et al., Resveratrol attenuates morphine antinociceptive tolerance via SIRT1 regulation in the rat spinal cord, Neurosci. Lett. 566 (2014) 55-60.
|
S. Reymond, T. Vujic, D. Schvartz, et al., Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells, Sci. Rep. 12 (2022), 4588.
|
K. Palczewski, T. Kumasaka, T. Hori, et al., Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289 (2000) 739-745.
|
E. Dolgin, First GPCR-directed antibody passes approval milestone, Nat. Rev. Drug Discov. 17 (2018) 457-459.
|
Y.L. Kasamon, H. Chen, R.A.de Claro, et al., FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and Sezary syndrome, Clin. Cancer Res. 25 (2019) 7275-7280.
|
W. Huang, A. Manglik, A.J. Venkatakrishnan, et al., Structural insights into μ-opioid receptor activation, Nature 524 (2015) 315-321.
|
S. Kaneko, S. Imai, N. Asao, et al., Activation mechanism of the μ-opioid receptor by an allosteric modulator, Proc. Natl. Acad. Sci. U S A 119 (2022), e2121918119.
|