Turn off MathJax
Article Contents
Chengyang Ni, Ling Zhou, Shuo Yang, Mei Ran, Jiesi Luo, Kui Cheng, Feihong Huang, Xiaoqin Tang, Xiang Xie, Dalian Qin, Qibing Mei, Long Wang, Juan Xiao, Jianming Wu. Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-ĸB pathway[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101054
Citation: Chengyang Ni, Ling Zhou, Shuo Yang, Mei Ran, Jiesi Luo, Kui Cheng, Feihong Huang, Xiaoqin Tang, Xiang Xie, Dalian Qin, Qibing Mei, Long Wang, Juan Xiao, Jianming Wu. Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-ĸB pathway[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101054

Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-ĸB pathway

doi: 10.1016/j.jpha.2024.101054
  • Received Date: Feb. 03, 2024
  • Accepted Date: Jul. 22, 2024
  • Rev Recd Date: Jul. 17, 2024
  • Available Online: Jul. 24, 2024
  • Radiation-induced thrombocytopenia (RIT) faces a perplexing challenge in the clinical treatment of cancer patients, and current therapeutic approaches are inadequate in the clinical settings. In this researsh, oxymatrine, a new molecule capable of healing RIT was screened out, and the underlying regulatory mechanism associated with magakaryocyte (MK) differentiation and thrombopoiesis was demonstrated. The capacity of oxymatrine to induce MK differentiation was verified in K-562 and Meg-01 cells in vitro. The ability to induce thrombopoiesis was subsequently demonstrated in Tg (cd41:eGFP) zebrafish and RIT model mice. In addition, we carried out network pharmacological prediction, drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) analyses to explore the potential targets of oxymatrine. Moreover, the pathway underlying the effects of oxymatrine was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Western blot, and immunofluorescence. Oxymatrine markedly promoted MK differentiation and maturation in vitro. Moreover, oxymatrine induced thrombopoiesis in Tg (cd41:eGFP) zebrafish and accelerated thrombopoiesis and platelet function recovery in RIT model mice. Mechanistically, oxymatrine directly binds to toll-like receptor 2 (TLR2) and further regulates the downstream pathway stimulator of interferon genes (STING)/nuclear factor-kappaB (NF-κB), which can be blocked by C29 and C-176, which are specific inhibitors of TLR2 and STING, respectively. Taken together, we demonstrated that oxymatrine, a novel TLR2 agonist, plays a critical role in accelerating MK differentiation and thrombopoiesis via the STING/NF-κB axis, suggesting that oxymatrine is a promising candidate for RIT therapy.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (26) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return