Turn off MathJax
Article Contents
Xin Tan, Yu Xiang, Jianyou Shi, Lu Chen, Dongke Yu. Targeting NTCP for liver disease treatment: A promising strategy[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.100979
Citation: Xin Tan, Yu Xiang, Jianyou Shi, Lu Chen, Dongke Yu. Targeting NTCP for liver disease treatment: A promising strategy[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.100979

Targeting NTCP for liver disease treatment: A promising strategy

doi: 10.1016/j.jpha.2024.100979
  • Received Date: Nov. 14, 2023
  • Rev Recd Date: Apr. 10, 2024
  • Available Online: Apr. 19, 2024
  • The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
  • loading
  • [1]
    M.E. Guicciardi, G.J. Gores, Apoptosis:A mechanism of acute and chronic liver injury, Gut 54(2005)1024-1033.
    [2]
    H. Miyoshi, C. Rust, P.J. Roberts, et al., Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas, Gastroenterology 117(1999)669-677.
    [3]
    W.A. Faubion, M.E. Guicciardi, H. Miyoshi, et al., Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas, J. Clin. Invest. 103(1999)137-145.
    [4]
    B. Stieger, The role of the sodium-taurocholate co-transporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation, Handb. Exp. Pharmacol.(2011)205-259.
    [5]
    H. Yan, G. Zhong, G. Xu, et al., Sodium taurocholate co-transporting polypeptide is a functional receptor for human hepatitis B and D virus, ELife 1(2012) e00049.
    [6]
    S. Chen, L. Zhang, Y. Chen, et al., Inhibiting sodium taurocholate co-transporting polypeptide in HBV-related diseases:from biological function to therapeutic potential, J. Med. Chem. 65(2022)12546-12561.
    [7]
    H. Liu, R.N. Irobalieva, R. Bang-Sørensen, et al., Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver, Cell. Res. 32(2022)773-776.
    [8]
    J. Asami, K.T. Kimura, Y. Fujita-Fujiharu, et al., Structure of the bile acid transporter and HBV receptor NTCP, Nature 606(2022)1021-1026.
    [9]
    J.Y. Kim, K.H. Kim, J.A. Lee, et al., Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells, Gastroenterology 122(2002)1941-1953.
    [10]
    D.W. Russell, Fifty years of advances in bile acid synthesis and metabolism, J. Lipid. Res. 50(2009) S120-S125.
    [11]
    E.R. Verrier, C.C. Colpitts, C. Bach, et al., Solute carrier NTCP regulates innate antiviral immune responses targeting hepatitis C virus infection of hepatocytes, Cell. Rep. 17(2016)1357-1368.
    [12]
    Z. Su, Y. Li, Y. Liao, et al., Association of the gene polymorphisms in sodium taurocholate co-transporting polypeptide with the outcomes of hepatitis B infection in Chinese Han population, Infect. Genet. Evol. 27(2014)77-82.
    [13]
    H. Hu, J. Liu, Y. Lin, et al., The rs2296651(S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B, Gut 65(2016)1514-1521.
    [14]
    R.H. Ho, B.F. Leake, R.L. Roberts, et al., Ethnicity-dependent polymorphism in Na+-taurocholate co-transporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition, J. Biol. Chem. 279(2004)7213-7222.
    [15]
    Z. Su, Y. Li, Y. Liao, et al., Polymorphisms in sodium taurocholate co-transporting polypeptide are not associated with hepatitis B virus clearance in Chinese Tibetans and Uygurs, Infect. Genet. Evol. 41(2016)128-134.
    [16]
    T.J. Liang, Hepatitis B:The virus and disease, Hepatology 49(2009) S13-S21.
    [17]
    G. Fattovich, T. Stroffolini, I. Zagni, et al., Hepatocellular carcinoma in cirrhosis:incidence and risk factors, Gastroenterology 127(2004) S35-S50.
    [18]
    M. Levrero, J. Zucman-Rossi, Mechanisms of HBV-induced hepatocellular carcinoma, J. Hepatol. 64(2016) S84-S101.
    [19]
    J. Liu, H.I. Yang, M.H. Lee, et al., Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma, Gut 63(2014)1648-1657.
    [20]
    T.F. Baumert, L. Meredith, Y. Ni, et al., Entry of hepatitis B and C viruses-Recent progress and future impact, Curr. Opin. Virol. 4(2014)58-65.
    [21]
    A. Barrera, B. Guerra, L. Notvall, et al., Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition, J Virol. 79(2005)9786-9798.
    [22]
    D. Glebe, S. Urban, E.V. Knoop, et al., Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes, Gastroenterology 129(2005)234-245.
    [23]
    C. Trépo, H.L.Y. Chan, A. Lok, Hepatitis B virus infection, Lancet 384(2014)2053-2063.
    [24]
    F. Habersetzer, R. Moenne-Loccoz, N. Meyer, et al., Loss of hepatitis B surface antigen in a real-life clinical cohort of patients with chronic hepatitis B virus infection, Liver. Int. 35(2015)130-139.
    [25]
    H.B. El-Serag, Epidemiology of viral hepatitis and hepatocellular carcinoma, Gastroenterology 142(2012)1264-1273.el.
    [26]
    H. Barth, C. Schafer, M.I. Adah, et al., Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate, J. Biol. Chem. 278(2003)41003-41012.
    [27]
    K. Morikawa, Z. Zhao, T. Date, et al., The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles, J. Med. Virol. 79(2007)714-723.
    [28]
    J. Lupberger, M.B. Zeisel, F. Xiao, et al., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nat. Med. 17(2011)589-595.
    [29]
    D.N. Martin, S.L. Uprichard, Identification of transferrin receptor 1 as a hepatitis C virus entry factor, Proc Natl Acad Sci U. S. A. 110(2013)10777-10782.
    [30]
    M.B. Zeisel, J. Lupberger, I. Fofana, et al., Host-targeting agents for prevention and treatment of chronic hepatitis C-Perspectives and challenges, J Hepatol 58(2013)375-384.
    [31]
    L. Zona, J. Lupberger, N. Sidahmed-Adrar, et al., HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex, Cell. Host. Microbe. 13(2013)302-313.
    [32]
    M.B. Zeisel, D.J. Felmlee, T.F. Baumert, Hepatitis C virus entry., Current Topics in Microbiology and Immunology. Berlin, Heidelberg:Springer Berlin Heidelberg, 369(2013)87-112.
    [33]
    C.C. Colpitts, E.R. Verrier, T.F. Baumert, Targeting viral entry for treatment of hepatitis B and C virus infections, ACS. Infect. Dis. 1(2015)420-427.
    [34]
    M. Nakagawa, N. Sakamoto, Y. Tanabe, et al., Suppression of hepatitis C virus replication by cyclosporin A is mediated by blockade of cyclophilins, Gastroenterology 129(2005)1031-1041.
    [35]
    K. Watashi, N. Ishii, M. Hijikata, et al., Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase, Mol. Cell. 19(2005)111-122.
    [36]
    F. Yang, J.M. Robotham, H.B. Nelson, et al., Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro, J. Virol. 82(2008)5269-5278.
    [37]
    C. Sureau, The use of hepatocytes to investigate HDV infection:The HDV/HepaRG model. Meth. in Mol. Biol. Vol. 640, 2010. 463-473.
    [38]
    O. Lamas Longarela, T.T. Schmidt, K. Schöneweis, et al., Proteoglycans act as cellular hepatitis delta virus attachment receptors, PLoS. One. 8(2013),e58340.
    [39]
    T. Asselah, D. Loureiro, N. Boyer, et al., Targets and future direct-acting antiviral approaches to achieve hepatitis B virus cure, Lancet. Gastroenterol. Hepatol. 4(2019)883-892.
    [40]
    D.Q. Huang, H.B. El-Serag, R. Loomba, Global epidemiology of NAFLD-related HCC:Trends, predictions, risk factors and prevention, Nat. Rev. Gastroenterol. Hepatol. 18(2021)223-238.
    [41]
    S.A. Harrison, G. Neff, C.D. Guy, et al., Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis, Gastroenterology 160(2021)219-231.el.
    [42]
    S.A. Harrison, S.J. Rossi, A.H. Paredes, et al., NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis, Hepatology 71(2020)1198-1212.
    [43]
    L.P. Bechmann, P. Kocabayoglu, J.P. Sowa, et al., Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis, Hepatology 57(2013)1394-1406.
    [44]
    N.E. Aguilar-Olivos, D. Carrillo-Córdova, J. Oria-Hernández, et al., The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in Hepalatide, Ann. Hepatol. 14(2015)487-493.
    [45]
    T. Kisseleva, D. Brenner, Molecular and cellular mechanisms of liver fibrosis and its regression, Nat. Rev. Gastroenterol. Hepatol. 18(2020)151-166.
    [46]
    G. Svegliati-Baroni, F. Ridolfi, R. Hannivoort, et al., Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor, Gastroenterology 128(2005)1042-1055.
    [47]
    A. Salhab, J. Amer, Y. Lu, et al., Sodium+/taurocholate co-transporting polypeptide as target therapy for liver fibrosis, Gut 71(2022)1373-1385.
    [48]
    A. Tanaka, Current understanding of primary biliary cholangitis, Clin. Mol. Hepatol. 27(2021)1-21.
    [49]
    H. Kojima, A.T. Nies, J. König, et al., Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis, J. Hepatol. 39(2003)693-702.
    [50]
    A. Honda, T. Ikegami, M. Nakamuta, et al., Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid, Hepatology 57(2013)1931-1941.
    [51]
    J. Ming, Q. Xu, L. Gao, et al., Kinsenoside alleviates 17α-ethinylestradiol-induced cholestatic liver injury in rats by inhibiting inflammatory responses and regulating FXR-mediated bile acid homeostasis, Pharm. Basel. 14(2021),452.
    [52]
    C. Global Burden of Disease Liver Cancer, T. Akinyemiju, S. Abera, et al., The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level:results from the global burden of disease study 2015, JAMA Oncol 3(2017)1683-1691.
    [53]
    J.D. Yang, P. Hainaut, G.J. Gores, et al., A global view of hepatocellular carcinoma:Trends, risk, prevention and management, Nat. Rev. Gastroenterol. Hepatol. 16(2019)589-604.
    [54]
    J.G. Stine, B.J. Wentworth, A. Zimmet, et al., Systematic review with meta-analysis:Risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases, Aliment. Pharmacol. Ther. 48(2018)696-703.
    [55]
    F. Mao, T. Liu, X. Hou, et al., Increased sulfation of bile acids in mice and human subjects with sodium taurocholate co-transporting polypeptide deficiency, J. Biol. Chem. 294(2019)11853-11862.
    [56]
    F.M. Vaz, C.C. Paulusma, H. Huidekoper, et al., Sodium taurocholate co-transporting polypeptide (SLC10A1) deficiency:Conjugated hypercholanemia without a clear clinical phenotype, Hepatology 61(2015)260-267.
    [57]
    A. Schneider, H. Köhler, B. Röthlisberger, et al., Sodium taurocholate co-transporting polypeptide deficiency, Clin. Res. Hepatol. and Gastroenterol. 46(2022),101824.
    [58]
    S. Urban, R. Bartenschlager, R. Kubitz, et al., Strategies to inhibit entry of HBV and HDV into hepatocytes, Gastroenterology 147(2014)48-64.
    [59]
    X.J. Liu, C. Liu, L.Y. Zhu, et al., Hepalatide ameliorated progression of nonalcoholic steatohepatitis in mice, Biomed. Pharmacother. 126(2020)110053.
    [60]
    H. Huang, H.C. Huang, W.C. Chiou, et al., Ergosterol peroxide inhibits HBV infection by inhibiting the binding of the pre-S1 domain of LHBsAg to NTCP, Antivir. Res. 195(2021)105184.
    [61]
    C. Kobayashi, Y. Watanabe, M. Oshima, et al., Fungal secondary metabolite exophillic acid selectively inhibits the entry of hepatitis B and D viruses, Viruses 14(2022), 764.
    [62]
    M. Kaneko, K. Watashi, S. Kamisuki, et al., A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate co-transporting polypeptide, J. Virol. 89(2015)11945-11953.
    [63]
    S.A. Gad, M. Sugiyama, M. Tsuge, et al., The kinesin KIF4 mediates HBV/HDV entry through the regulation of surface NTCP localization and can be targeted by RXR agonists in vitro, PLoS. Pathog. 18(2022), e1009983.
    [64]
    Y. Liu, L. Zhang, H. Yan, et al., Design of dimeric bile acid derivatives as potent and selective human NTCP inhibitors, J. Med. Chem. 64(2021)5973-6007.
    [65]
    R.L.P. Roscam Abbing, D. Slijepcevic, J.M. Donkers, et al., Blocking sodium-taurocholate co-transporting polypeptide stimulates biliary cholesterol and phospholipid secretion in mice, Hepatology 71(2020)247-258.
    [66]
    Y. Ni, F.A. Lempp, S. Mehrle, et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes, Gastroenterology 146(2014)1070-1083.e1076.
    [67]
    J. Petersen, M. Dandri, W. Mier, et al., Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein, Nat. Biotechnol. 26(2008)335-341.
    [68]
    K. Zhao, S. Liu, Y. Chen, et al., Upregulation of HBV transcription by sodium taurocholate co-transporting polypeptide at the postentry step is inhibited by the entry inhibitor Myrcludex B, Emerg. Microbes. Infect. 7(2018),186.
    [69]
    A. Schulze, A. Schieck, Y. Ni, et al., Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction, J. Virol. 84(2010)1989-2000.
    [70]
    M. Lütgehetmann, L.V. Mancke, T. Volz, et al., Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation, Hepatology 55(2012)685-694.
    [71]
    A. Blank, C. Markert, N. Hohmann, et al., First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B, J. Hepatol. 65(2016)483-489.
    [72]
    P. Bogomolov, A. Alexandrov, N. Voronkova, et al., Treatment of chronic hepatitis D with the entry inhibitor myrcludex B:First results of a phase Ib/IIa study, J. Hepatol. 65(2016)490-498.
    [73]
    K. Fukano, S. Tsukuda, M. Oshima, et al., Troglitazone impedes the oligomerization of sodium Ttaurocholate co-transporting polypeptide and entry of hepatitis B virus into hepatocytes, Front. Microbiol. 9(2019), 3257.
    [74]
    E.M. Agency., Hepcludex (bulevirtide) powder for solution for injection:EU summary of product characteristics.(Accessed Accessed 31 Aug 2020.).
    [75]
    C. Kang, Y.Y. Syed, Bulevirtide:First approval, Drugs 80(2020)1601-1605.
    [76]
    M. Pharmaceuticals, MYR Pharmaceuticals-treatment of HBV&HDV infections. https://link.springer.com/article/10.1007/s40265-020-01400-1.(Assessed 24 Oct 2023)
    [77]
    B.C. Ferslew, G. Xie, C.K. Johnston, et al., Altered bile acid metabolome in patients with nonalcoholic steatohepatitis, Dig. Dis. Sci. 60(2015)3318-3328.
    [78]
    E.J. Cho, J.H. Yoon, M.S. Kwak, et al., Tauroursodeoxycholic acid attenuates progression of steatohepatitis in mice fed a methionine-choline-deficient diet, Dig. Dis. Sci. 59(2014)1461-1474.
    [79]
    clinicaltrials.gov, A Study of Apalutamide in Chinese Participants With Non Metastatic Castration Resistant Prostate Cancer (NM-CRPC).(Accessed https://clinicaltrials.gov/ct2/show/NCT04108208).
    [80]
    S. Nkongolo, Y. Ni, F.A. Lempp, et al., Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor, J. Hepatol. 60(2014)723-731.
    [81]
    M.A. El-Farrash, H.H. Aly, K. Watashi, et al., In vitro infection of immortalized primary hepatocytes by HCV genotype 4a and inhibition of virus replication by cyclosporin, Microbiol. Immunol. 51(2007)127-133.
    [82]
    K. Watashi, M. Hijikata, M. Hosaka, et al., Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes, Hepatology 38(2003)1282-1288.
    [83]
    Y. Liu, H. Ruan, Y. Li, et al., Potent and specific inhibition of NTCP-mediated HBV/HDV infection and substrate transporting by a novel, oral-available cyclosporine A analogue, J. Med. Chem. 64(2021)543-565.
    [84]
    C. Saran, H. Ho, P. Honkakoski, et al., Effect of mTOR inhibitors on sodium taurocholate co-transporting polypeptide (NTCP) function in vitro, Pharmacol. 14(2023), 1147495..
    [85]
    E. J.Lewis, L. G.Hunsicker, W. R.Clarke, et al., Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes, N. Engl. J. Med. 345(2001)851-860.
    [86]
    X. Wang, W. Hu, T. Zhang, et al., Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na+-dependent taurocholate co-transporting polypeptide activity, Antivir. Res. 120(2015)140-146.
    [87]
    C. Ko, W.J. Park, S. Park, et al., The FDA-approved drug irbesartan inhibits HBV-infection in HepG2 cells stably expressing sodium taurocholate co-transporting polypeptide, Antivir. Ther. 20(2015)835-842.
    [88]
    Z. Dong, S. Ekins, J.E. Polli, Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate co-transporting polypeptide (NTCP), Mol. Pharm. 10(2013)1008-1019.
    [89]
    X. Qiu, Z. Wang, B. Wang, et al., Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by ultra high performance liquid chromatography tandem mass spectrometry and its application to a bioequivalence study, J. Chromatogr. B. 957(2014)110-115.
    [90]
    B. Cariou, B. Charbonnel, B. Staels, Thiazolidinediones and PPARγ agonists:Time for a reassessment, Trends. Endocrinol. Metab. 23(2012)205-215.
    [91]
    Y. Wakui, J. Inoue, Y. Ueno, et al., Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-γ ligand, rosiglitazone, Biochem. Biophys. Res. Commun. 396(2010)508-514.
    [92]
    D.J. Graham, L. Green, J.R. Senior, et al., Troglitazone-induced liver failure:a case study, Am. J. Med. 114(2003)299-306.
    [93]
    J. Lucifora, K. Esser, U. Protzer, Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes, Antivir. Res. 97(2013)195-197.
    [93]
    J. Lucifora, K. Esser, U. Protzer, Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes, Antivir. Res. 97(2013)195-197.
    [94]
    B. Sainz, N. Barretto, D.N. Martin, et al., Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor, Nat. Med. 18(2012)281-285.
    [94]
    B. Sainz, N. Barretto, D.N. Martin, et al., Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor, Nat. Med. 18(2012)281-285.
    [95]
    Z. Abbas, M. Saad, M. Asim, et al., The effect of twelve weeks of treatment with ezetimibe on HDV RNA level in patients with chronic hepatitis D, Turk. J. Gastroenterol. 31(2020)136-141.
    [95]
    Z. Abbas, M. Saad, M. Asim, et al., The effect of twelve weeks of treatment with ezetimibe on HDV RNA level in patients with chronic hepatitis D, Turk. J. Gastroenterol. 31(2020)136-141.
    [96]
    M.Y. Kim, S.K. Baik, D.H. Park, et al., Angiotensin receptor blockers are superior to angiotensin-converting enzyme inhibitors in the suppression of hepatic fibrosis in a bile duct-ligated rat model, J. Gastroenterol. 43(2008)889-896.
    [97]
    C.L. Bowlus, P.J. Pockros, A.E. Kremer, et al., Long-term obeticholic acid therapy improves histological endpoints in patients with primary biliary cholangitis, Clin. Gastroenterol. Hepatol. 18(2020)1170-1178.e1176.
    [98]
    M. Trauner, F. Nevens, M.L. Shiffman, et al., Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis:3-year results of an international open-label extension study, Lancet. Gastroenterol. Hepatol. 4(2019)445-453.
    [99]
    Y. Nio, Y. Akahori, H. Okamura, et al., Inhibitory effect of fasiglifam on hepatitis B virus infections through suppression of the sodium taurocholate co-transporting polypeptide, Biochem. Biophys. Res. Commun. 501(2018)820-825.
    [100]
    X. Li, K. Zhong, Z. Guo, et al., Fasiglifam (TAK-875) inhibits hepatobiliary transporters:A possible factor contributing to fasiglifam-induced liver injury, Drug. Metab. Dispos. 43(2015)1751-1759.
    [101]
    D. Cheng, H. Gao, W. Li, Long-term risk of rosiglitazone on cardiovascular events-a systematic review and meta-analysis, Endokrynol. Pol. 69(2018)381-394.
    [102]
    M.G. Anelli, C. Scioscia, I. Grattagliano, et al., Old and new antirheumatic drugs and the risk of hepatotoxicity, Ther. Drug. Monit. 34(2012)622-628.
    [103]
    S. Zhao, Y. Zhen, L. Fu, et al., Design, synthesis and biological evaluation of benzamide derivatives as novel NTCP inhibitors that induce apoptosis in HepG2 cells, Bioorg. Med. Chem. Lett. 29(2019)126623.
    [104]
    J.M. Song, K.H. Lee, B.L. Seong, Antiviral effect of catechins in green tea on influenza virus, Antiviral. Res. 68(2005)66-74.
    [105]
    H.C. Huang, M.H. Tao, T.M. Hung, et al.,(-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes, Antiviral Res 111(2014)100-111.
    [106]
    D. Halegoua-De Marzio, W.K. Kraft, C. Daskalakis, et al., Limited sampling estimates of epigallocatechin gallate exposures in cirrhotic and noncirrhotic patients with hepatitis C after single oral doses of green tea extract, Clin. Ther. 34(2012)2279-2285.el.
    [107]
    D.K. Yu, C.X. Zhang, S.S. Zhao, et al., The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway, Acta. Pharmacol. Sin. 36(2015)473-482.
    [108]
    H.M. Chung, Y. Wang, C.C. Tseng, et al., Natural product chemistry of gorgonian corals of genus junceella-part III, Mar. Drugs. 16(2018), 339.
    [109]
    X. Li, H. Liu, W. Cheng, et al., Junceellolide B, a novel inhibitor of Hepatitis B virus, Bioorg. Med. Chem. 28(2020), 115603.
    [110]
    S.Y. Teow, K. Liew, S.A. Ali, et al., Antibacterial action of curcumin against staphylococcus aureus:A brief review, J. Trop. Med. 2016(2016), 2853045.
    [111]
    M. Tomeh, R. Hadianamrei, X. Zhao, A review of curcumin and its derivatives as anticancer agents, Int. J. Mol. Sci. 20(2019), E1033.
    [112]
    S. Z. Moghadamtousi, H. Abdul Kadir, P. Hassandarvish, et al., A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed. Res. Int. 2014(2014), 186864.
    [113]
    Z.Q. Wei, Y.H. Zhang, C.Z. Ke, et al., Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation, World. J. Gastroenterol. 23(2017)6252-6260.
    [114]
    Anggakusuma, C.C. Colpitts, L.M. Schang, et al., Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells, Gut 63(2014)1137-1149.
    [115]
    K. Kim, K.H. Kim, H.Y. Kim, et al., Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway, FEBS. Lett. 584(2010)707-712.
    [116]
    L. Padilla-S, A. Rodríguez, M.M. Gonzales, et al., Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro, Arch. Virol. 159(2014)573-579.
    [117]
    D. Praditya, L. Kirchhoff, J. Brüning, et al., Anti-infective properties of the golden spice curcumin, Microbiol. 10(2019), 912..
    [118]
    P. Thongsri, Y. Pewkliang, S. Borwornpinyo, et al., Curcumin inhibited hepatitis B viral entry through NTCP binding, Sci. Rep. 11(2021), 19125.
    [119]
    H. Cai, Y. Cheng, Q. Zhu, et al., Identification of triterpene acids in poria cocos extract as bile acid uptake transporter inhibitors, Drug. Metab. Dispos. 49(2021)353-360.
    [120]
    M. Kobori, M. Yoshida, M. Ohnishi-Kameyama, et al., Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells, Br. J. Pharmacol. 150(2007)209-219.
    [121]
    H. Wu, F. Yang, L. Li, et al., Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells, Sci. Rep. 8(2018)17956.
    [122]
    S. Tsukuda, K. Watashi, M. Iwamoto, et al., Dysregulation of retinoic acid receptor diminishes hepatocyte permissiveness to hepatitis B virus infection through modulation of sodium taurocholate co-transporting polypeptide (NTCP) expression, J. Biol. Chem. 290(2015)5673-5684.
    [123]
    M. Kirstgen, K.A.A.T. Lowjaga, S.F. Müller, et al., Selective hepatitis B and D virus entry inhibitors from the group of pentacyclic lupane-type betulin-derived triterpenoids, Sci. Rep. 10(2020), 21772.
    [124]
    S. Tsukuda, K. Watashi, T. Hojima, et al., A new class of hepatitis B and D virus entry inhibitors, proanthocyanidin and its analogs, that directly act on the viral large surface proteins, Hepatology 65(2017)1104-1116.
    [125]
    L.L. Fu, J. Liu, Y. Chen, et al., In silico analysis and experimental validation of azelastine hydrochloride (N4) targeting sodium taurocholate co-transporting polypeptide (NTCP) in HBV therapy, Cell. Prolif. 47(2014)326-335.
    [126]
    K. Fukano, S. Tsukuda, K. Watashi, et al., Concept of viral inhibitors via NTCP, Semin. Liver. Dis. 39(2019)78-85.
    [127]
    J. Powers, D.J. Rose, A. Saunders, et al., Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes, J. Cell. Biol. 166(2004)991-1001.
    [128]
    B.C. Williams, M.F. Riedy, E.V. Williams, et al., The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis, J. Cell. Biol. 129(1995)709-723.
    [129]
    Y. Sabo, D. Walsh, D.S. Barry, et al., HIV-1 induces the formation of stable microtubules to enhance early infection, Cell. Host. Microbe. 14(2013)535-546.
    [130]
    C.L. Zhu, D.Z. Cheng, F. Liu, et al., Hepatitis B virus upregulates the expression of kinesin family member 4A, Mol. Med. Rep. 12(2015)3503-3507.
    [131]
    H. Yan, B. Peng, Y. Liu, et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate co-transporting polypeptide, J. Virol. 88(2014)3273-3284.
    [132]
    C. Yurdaydin, O. Keskin, E. Yurdcu, et al., A phase 2 dose-finding study of lonafarnib and ritonavir with or without interferon alpha for chronic delta hepatitis, Hepatology 75(2022)1551-1565.
    [133]
    K. Watashi, A. Sluder, T. Daito, et al., Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate co-transporting polypeptide (NTCP), Hepatology 59(2014)1726-1737.
    [134]
    T. Takemori, A. Sugimoto-Ishige, H. Nishitsuji, et al., Establishment of a monoclonal antibody against human NTCP that blocks hepatitis B virus infection, J. Virol. 96(2022), e0168621.
    [135]
    Z. Zhang, Q. Zhang, Y. Zhang, et al., Role of sodium taurocholate co-transporting polypeptide (NTCP) in HBV-induced hepatitis:Opportunities for developing novel therapeutics, Biochem. Pharmacol. 219(2024), 115956.
    [136]
    ClinicalTrials.gov, A Multicenter, Open-label, Randomized Clinical Study to Assess Efficacy and Safety of 3 Doses of Myrcludex B for 24 Weeks in Combination With Tenofovir Compared to Tenofovir Alone to Suppress HBV Replication in Patients With Chronic Hepatitis D.(Accessed https://clinicaltrials.gov/study/NCT03546621?cond=NCT03546621&rank=1).
    [137]
    Y.X. Guo, X.F. Xu, Q.Z. Zhang, et al., The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity, Toxicol. Mech. Meth. 25(2015)382-387.
    [138]
    L. Zhou, Y. Song, J. Zhao, et al., Monoammonium glycyrrhizinate protects rifampicin-and isoniazid-induced hepatotoxicity via regulating the expression of transporter Mrp2, Ntcp, and Oatp1a4 in liver, Pharm. Biol. 54(2016)931-937.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (14) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return