Citation: | Chen Hong, Yifan Zhang, Lili Yang, Haoyang Xu, Kang Cheng, Zhi Lv, Kaixian Chen, Yiming Li, Huali Wu. Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 69-85. doi: 10.1016/j.jpha.2023.09.006 |
[1] |
S.A. D’Mello, G.J. Finlay, B.C. Baguley, et al., Signaling pathways in melanogenesis, Int. J. Mol. Sci. 17 (2016), 1144.
|
[2] |
X. Tian, Z. Cui, S. Liu, et al., Melanosome transport and regulation in development and disease, Pharmacol. Ther. 219 (2021), 107707.
|
[3] |
S. Benito-Martinez, L. Salavessa, G. Raposo, et al., Melanin transfer and fate within keratinocytes in human skin pigmentation, Integr. Comp. Biol. 61 (2021) 1546-1555.
|
[4] |
I.F. Videira, D.F. Moura, S. Magina, Mechanisms regulating melanogenesis, An. Bras. Dermatol. 88 (2013) 76-83.
|
[5] |
N. Arora, E.M. Siddiqui, S. Mehan, Involvement of adenylate cyclase/cAMP/CREB and SOX9/MITF in melanogenesis to prevent vitiligo, Mol. Cell. Biochem. 476 (2021) 1401-1409.
|
[6] |
H. Ando, H. Kondoh, M. Ichihashi, et al., Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase, J. Invest. Dermatol. 127 (2007) 751-761.
|
[7] |
R. Halaban, E. Cheng, Y. Zhang, et al., Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells, Proc. Natl. Acad. Sci. U S A 94 (1997) 6210-6215.
|
[8] |
C. Hong, L. Yang, Y. Zhang, et al., Epimedium brevicornum Maxim. extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer, Front. Pharmacol. 13 (2022), 963160.
|
[9] |
H. Tang, L. Yang, L. Wu, et al., Kaempferol, the melanogenic component of Sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes, J. Pharmacol. Sci. 147 (2021) 348-357.
|
[10] |
D. Hu, Methodology for evaluation of melanin content and production of pigment cells in vitro, Photochem. Photobiol. 84 (2008) 645-649.
|
[11] |
Y.S. Su, Z.X. Fan, S.E. Xiao, et al., Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells, Clin. Exp. Dermatol. 42 (2017) 287-294.
|
[12] |
L. Le, J. Sires-Campos, G. Raposo, et al., Melanosome biogenesis in the pigmentation of mammalian skin, Integr. Comp. Biol. 61 (2021) 1517-1545.
|
[13] |
D. Kim, H.J. Kim, H.S. Jun, Polygonum multiflorum thunb. extract stimulates melanogenesis by induction of COX2 expression through the activation of p38 MAPK in B16F10 mouse melanoma cells, Evid. Based Complement. Alternat. Med. 2020 (2020), 7642019.
|
[14] |
C. Niu, H.A. Aisa, Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo, Molecules 22 (2017), 1303.
|
[15] |
J.E. Harris, Chemical-induced vitiligo, Dermatol. Clin. 35 (2017) 151-161.
|
[16] |
J.G. van den Boorn, D.I. Picavet, P.F. van Swieten, et al., Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy, J. Invest. Dermatol. 131 (2011) 1240-1251.
|
[17] |
S. Svedine, T. Wang, R. Halaban, et al., Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase, J. Cell Sci. 117 (2004) 2937-2949.
|
[18] |
Y. Zhu, S. Wang, A. Xu, A mouse model of vitiligo induced by monobenzone, Exp. Dermatol. 22 (2013) 499-501.
|
[19] |
R. Speeckaert, S. Voet, E. Hoste, et al., S100B is a potential disease activity marker in nonsegmental vitiligo, J. Invest. Dermatol. 137 (2017) 1445-1453.
|
[20] |
X. Diao, L. Wang, Y. Zhou, et al., The mechanism of Epimedin B in treating osteoporosis as revealed by RNA sequencing-based analysis, Basic Clin. Pharmacol. Toxicol. 129 (2021) 450-461.
|
[21] |
M. Zhang, Z. Hu, X. Dong, et al., Epimedin B exerts neuroprotective effect against MPTP-induced mouse model of Parkinson’s disease: GPER as a potential target, Biomed. Pharmacother. 156 (2022), 113955.
|
[22] |
Y. Gao, W. Shi, C. Tu, et al., Immunostimulatory activity and structure-activity relationship of epimedin B from Epimedium brevicornu Maxim., Front. Pharmacol. 13 (2022), 1015846.
|
[23] |
A. Slominski, D.J. Tobin, S. Shibahara, et al., Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev. 84 (2004) 1155-1228.
|
[24] |
G.E. Costin, V.J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB. J. 21 (2007) 976-994.
|
[25] |
C.J. Cooksey, P.J. Garratt, E.J. Land, et al., Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase, J. Biol. Chem. 272 (1997) 26226-26235.
|
[26] |
C.A. Ramsden, P.A. Riley, Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation, Bioorg. Med. Chem. 22 (2014) 2388-2395.
|
[27] |
H.S. Mason, The chemistry of melanin; mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase, J. Biol. Chem. 172 (1948) 83-99.
|
[28] |
Y. Wang, M.J. Androlewicz, Oligosaccharide trimming plays a role in the endoplasmic reticulum-associated degradation of tyrosinase, Biochem. Biophys. Res. Commun. 271 (2000) 22-27.
|
[29] |
M. Furumura, F. Solano, N. Matsunaga, et al., Metal ligand-binding specificities of the tyrosinase-related proteins, Biochem. Biophys. Res. Commun. 242 (1998) 579-585.
|
[30] |
J. Allouche, I. Rachmin, K. Adhikari, et al., NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism, Cell 184 (2021) 4268-4283.e20.
|