Citation: | Sze Wan Hung, Massimiliano Gaetani, Yiran Li, Zhouyurong Tan, Xu Zheng, Ruizhe Zhang, Yang Ding, Gene Chi Wai Man, Tao Zhang, Yi Song, Yao Wang, Jacqueline Pui Wah Chung, Tak Hang Chan, Roman A. Zubarev, Chi Chiu Wang. Distinct molecular targets of ProEGCG from EGCG and superior inhibition of angiogenesis signaling pathways for treatment of endometriosis[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 100-114. doi: 10.1016/j.jpha.2023.09.005 |
[1] |
K.T. Zondervan, C.M. Becker, S.A. Missmer, Endometriosis, N Engl J. Med. 382 (2020) 1244-1256.
|
[2] |
M.J. Fuldeore, A.M. Soliman, Prevalence and symptomatic burden of diagnosed endometriosis in the United States: National estimates from a cross-sectional survey of 59, 411 women, Gynecol. Obstet. Investig. 82 (2016) 453-461.
|
[3] |
J. Brown, C. Farquhar, Endometriosis: An overview of cochrane reviews, Cochrane Database Syst. Rev. (2014), CD009590.
|
[4] |
C.S. Deguara, B. Liu, C. Davis, Measured symptomatic and psychological outcomes in women undergoing laparoscopic surgery for endometriosis, Curr. Opin. Obstet. Gynecol. 25 (2013) 299-301.
|
[5] |
J.A. Sampson, Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity, Am. J. Obstet. Gynecol. 14 (1927) 422-469.
|
[6] |
L.F. Jerman, A.J. Hey-Cunningham, The role of the lymphatic system in endometriosis: A comprehensive review of the literature, Biol Reprod 92 (2015) 64, 1-10.
|
[7] |
S.W. Hung, R. Zhang, Z. Tan, et al., Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review, Med. Res. Rev. 41 (2021) 2489-2564.
|
[8] |
G. Bozdag, Recurrence of endometriosis: Risk factors, mechanisms and biomarkers, Women's Heath. 11 (2015) 693-699.
|
[9] |
G. Grandi, F. Barra, S. Ferrero, et al., Hormonal contraception in women with endometriosis: A systematic review, Eur. J. Contracept. Reprod. Health Care 24 (2019) 61-70.
|
[10] |
D. Scholes, A.Z. LaCroix, L.E. Ichikawa, et al., Change in bone mineral density among adolescent women using and discontinuing depot medroxyprogesterone acetate contraception, Arch. Pediatr. Adolesc. Med. 159 (2005): 139-144.
|
[11] |
H.S. Taylor, L.C. Giudice, B.A. Lessey, et al., Treatment of endometriosis-associated pain with elagolix, an oral GnRH antagonist, N Engl J. Med. 377 (2017) 28-40.
|
[12] |
W. Zheng, L. Cao, Z. Xu, et al., Anti-angiogenic alternative and complementary medicines for the treatment of endometriosis: A review of potential molecular mechanisms, Evid. Based Complementary Altern. Med. 2018 (2018) 1-28.
|
[13] |
Y. Que, Y. Liang, J. Zhao, et al., Treatment-related adverse effects with pazopanib, sorafenib and sunitinib in patients with advanced soft tissue sarcoma: A pooled analysis, Cancer Manag. Res. 10 (2018) 2141-2150.
|
[14] |
C.C. Wang, H. Xu, G.C.W. Man, et al., Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice, Angiogenesis 16 (2013) 59-69.
|
[15] |
H. Xu, C.M. Becker, W.T. Lui, et al., Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo, Fertil. Steril. 96 (2011) 1021-1028.e1.
|
[16] |
H. Xu, W.T. Lui, C.Y. Chu, et al., Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model, Hum Reprod 24 (2009) 608-618.
|
[17] |
W.H. Lam, A. Kazi, D.J. Kuhn, et al., A potential prodrug for a green tea polyphenol proteasome inhibitor: Evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG, Bioorg. Med. Chem. 12 (2004) 5587-5593.
|
[18] |
S.W. Hung, B. Liang, Y. Gao, et al., An In-silico, In-vitro and In-vivo combined approach to identify NMNATs as potential protein targets of ProEGCG for treatment of endometriosis, Front. Pharmacol. 12 (2021), 714790.
|
[19] |
M. Gaetani, P. Sabatier, A.A. Saei, et al., Proteome integral solubility alteration: A high-throughput proteomics assay for target deconvolution, J. Proteome Res. 18 (2019) 4027-4037.
|
[20] |
T. Tang, Y. Deng, J. Chen, et al., Local administration of siRNA through microneedle: Optimization, bio-distribution, tumor suppression and toxicity, Sci. Rep. 6 (2016), 30430.
|
[21] |
G. Du, Z. Zhang, X. Wen, et al., Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea, Nutrients 4 (2012) 1679-1691.
|
[22] |
C. Chu, J. Deng, Y. Man, et al., Green tea extracts epigallocatechin-3-gallate for different treatments, Biomed Res. Int. 2017 (2017), 5615647.
|
[23] |
H.J. Thirkettle, J. Girling, A.Y. Warren, et al., LYRIC/AEG-1 is targeted to different subcellular compartments by ubiquitinylation and intrinsic nuclear localization signals, Clin. Cancer Res. 15 (2009) 3003-3013.
|
[24] |
Y. Hou, L. Yu, Y. Mi, et al., Association of MTDH immunohistochemical expression with metastasis and prognosis in female reproduction malignancies: A systematic review and meta-analysis, Sci. Rep. 6 (2016), 38365.
|
[25] |
J. Mazieres, T. Antonia, G. Daste, et al. Loss of RhoB expression in human lung cancer progression. Clin Cancer Res. 10 (2004) 2742-2750.
|
[26] |
G. Hu, Y. Wei, Y. Kang, The multifaceted role of MTDH/AEG-1 in cancer progression, Clin. Cancer Res. 15 (2009) 5615-5620.
|
[27] |
X. Shi, X. Wang, The role of MTDH/AEG-1 in the progression of cancer, Int. J. Clin. Exp. Med. 8 (2015) 4795-4807.
|
[28] |
Y. Li, J.G. Bosquet, S. Yang, et al., Role of metadherin in estrogen-regulated gene expression, Int. J. Mol. Med. 40 (2017) 303-310.
|
[29] |
D. Manna, D. Sarkar, Multifunctional role of astrocyte elevated gene-1 (AEG-1) in cancer: Focus on drug resistance, Cancers 13 (2021), 1792.
|
[30] |
S.G. Lee, Z.Z. Su, L. Emdad, et al., Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling, Oncogene 27 (2008) 1114-1121.
|
[31] |
L. Emdad, D. Sarkar, Z. Su, et al., Activation of the nuclear factor κB pathway by astrocyte elevated gene-1: Implications for tumor progression and metastasis, Cancer Res. 66 (2006) 1509-1516.
|
[32] |
L. Emdad, S.G. Lee, Z. Su, et al., Astrocyte elevated gene-1 (AEG-1) functions as an oncogene and regulates angiogenesis, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 21300-21305.
|
[33] |
G. Zhu, C. Yu, L. She, et al., Metadherin regulation of vascular endothelial growth factor expression is dependent upon the PI3K/akt pathway in squamous cell carcinoma of the head and neck, Medicine 94 (2015), e502.
|
[34] |
J. Yang, Z. Wang, Z. Tang, et al., Metadherin regulates epithelial-mesenchymal transition in carcinoma, OncoTargets Ther. (2016), 2429.
|
[35] |
X. Meng, P. Brachova, S. Yang, et al., Knockdown of MTDH sensitizes endometrial cancer cells to cell death induction by death receptor ligand TRAIL and HDAC inhibitor LBH589 co-treatment, PLoS One 6 (2011), e20920.
|
[36] |
J. Guo, J. Gao, X. Yu, et al., Expression of DJ-1 and mTOR in eutopic and ectopic endometria of patients with endometriosis and adenomyosis, Gynecol. Obstet. Investig. 79 (2015) 195-200.
|
[37] |
K.R. Rogers-Broadway, J. Kumar, C. Sisu, et al., Differential expression of mTOR components in endometriosis and ovarian cancer: Effects of rapalogues and dual kinase inhibitors on mTORC1 and mTORC2 stoichiometry, Int. J. Mol. Med. 43 (2019) 47-56.
|
[38] |
Y. Mizukami, K. Fujiki, E.M. Duerr, et al., Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/rho/ROCK and c-myc, J. Biol. Chem. 281 (2006) 13957-13963.
|
[39] |
L. Emdad, S.K. Das, S. Dasgupta, et al., AEG-1/MTDH/LYRIC: Signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis, Adv. Cancer Res. 120 (2013) 75-111.
|
[40] |
C. Blancher, J.W. Moore, N. Robertson, et al., Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway, Cancer Res. 61 (2001) 7349-7355.
|
[41] |
H. Takeuchi, T. Takeuchi, J. Gao, et al., Characterization of PXK as a protein involved in epidermal growth factor receptor trafficking, Mol. Cell. Biol. 30 (2010) 1689-1702.
|
[42] |
F. Zeng, R.C. Harris, Epidermal growth factor, from gene organization to bedside, Semin. Cell Dev. Biol. 28 (2014) 2-11.
|
[43] |
Y. Wang, M. Wu, Y. Lin, et al., Association of epidermal growth factor receptor (EGFR) gene polymorphisms with endometriosis, Medicine 98 (2019), e15137.
|
[44] |
R.E.B. Haining, I.T. Cameron, C. van Papendorp, et al., Epidermal growth factor in human endometrium: Proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues, Hum Reprod 6 (1991) 1200-1205.
|
[45] |
H. Rakhila, M. Al-Akoum, M.E. Bergeron, et al., Promotion of angiogenesis and proliferation cytokines patterns in peritoneal fluid from women with endometriosis, J. Reprod. Immunol. 116 (2016) 1-6.
|
[46] |
H. Zhan, B. Peng, J. Ma, et al., Epidermal growth factor promotes stromal cells migration and invasion via up-regulation of hyaluronate synthase 2 and hyaluronan in endometriosis, Fertil. Steril. 114 (2020) 888-898.
|
[47] |
R.N. Taylor, J. Yu, P.B. Torres, et al., Mechanistic and therapeutic implications of angiogenesis in endometriosis, Reprod. Sci. 16 (2009) 140-146.
|
[48] |
A.W. Nap, A.W. Griffioen, G.A.J. Dunselman, et al., Antiangiogenesis therapy for endometriosis, J. Clin. Endocrinol. Metab. 89 (2004) 1089-1095.
|
[49] |
C.M. Becker, N. Rohwer, T. Funakoshi, et al., 2-methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis, Am. J. Pathol. 172 (2008) 534-544.
|
[50] |
C.K. Goldman, J. Kim, W.L. Wong, et al., Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: A model of glioblastoma multiforme pathophysiology, Mol. Biol. Cell 4 (1993) 121-133.
|
[51] |
H. Zhong, K. Chiles, D. Feldser, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60 (2000) 1541-1545.
|
[52] |
N. Pore, Z. Jiang, A. Gupta, et al., EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms, Cancer Res. 66 (2006) 3197-3204.
|
[53] |
D. Zepeda-Orozco, H.M. Wen, B.A. Hamilton, et al., EGF regulation of proximal tubule cell proliferation and VEGF-A secretion, Physiol. Rep. 5 (2017), e13453.
|
[54] |
Q. Zhang, X. Tang, Q. Lu, et al., Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1α protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells, Mol. Cancer Ther. 5 (2006) 1227-1238.
|
[55] |
H. Luo, M. Xu, W. Zhong, et al., EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells, J. Buon 19 (2014) 435-439.
|
[56] |
M. Mittelbrunn, F. Sanchez-Madrid, Intercellular communication: Diverse structures for exchange of genetic information, Nat. Rev. Mol. Cell Biol. 13 (2012) 328-335.
|
[57] |
B.L.D.M. Brucher, I.S. Jamall, Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment, Cell. Physiol. Biochem. 34 (2014) 213-243.
|