Citation: | Min Yang, Chun Zhang. The role of innate immunity in diabetic nephropathy and their therapeutic consequences[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 39-51. doi: 10.1016/j.jpha.2023.09.003 |
[1] |
C.S. Fox, K. Matsushita, M. Woodward, et al., Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis, Lancet 380 (2012) 1662-1673.
|
[2] |
S. Hadjadj, B. Cariou, F. Fumeron, et al., Death, end-stage renal disease and renal function decline in patients with diabetic nephropathy in French cohorts of type 1 and type 2 diabetes, Diabetologia 59 (2016) 208-216.
|
[3] |
N.M. Selby, M.W. Taal, An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines, Diabetes Obes. Metab. 22 (2020) 3-15.
|
[4] |
A. Lim, Diabetic nephropathy-complications and treatment, Int. J. Nephrol. Renovascular Dis. 7 (2014) 361-381.
|
[5] |
G. Hasegawa, K. Nakano, M. Sawada, et al., Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy, Kidney Int. 40 (1991) 1007-1012.
|
[6] |
A.K.H. Lim, G.H. Tesch, Inflammation in diabetic nephropathy, Mediat. Inflamm. 2012 (2012) 1-12.
|
[7] |
F.B. Hickey, F. Martin, Role of the immune system in diabetic kidney disease, Curr. Diabetes Rep. 18 (2018) 1-10.
|
[8] |
S.C.W. Tang, J.C.K. Leung, L.Y.Y. Chan, et al., Activation of tubular epithelial cells in diabetic nephropathy and the role of the peroxisome proliferator-activated receptor-γ agonist, J. Am. Soc. Nephrol. 17 (2006) 1633-1643.
|
[9] |
J.J. Navarro, F.F. Milena, C. Mora, et al., Tumor necrosis factor-α gene expression in diabetic nephropathy: Relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition, Kidney Int. 68 (2005) S98-S102.
|
[10] |
S.C.W. Tang, L.Y.Y. Chan, J.C.K. Leung, et al., Additive renoprotective effects of B2-kinin receptor blocker and PPAR-γ agonist in uninephrectomized db/db mice, Lab. Investig. 91 (2011) 1351-1362.
|
[11] |
F.Y. Chow, D.J. Nikolic-Paterson, E. Ozols, et al., Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice, J. Am. Soc. Nephrol. 16 (2005) 1711-1722.
|
[12] |
S.C.W. Tang, L.Y.Y. Chan, J.C.K. Leung, et al., Bradykinin and high glucose promote renal tubular inflammation, Nephrol Dial Transplant 25 (2010) 698-710.
|
[13] |
D. Nguyen, F. Ping, W. Mu, et al., Macrophage accumulation in human progressive diabetic nephropathy, Nephrology 11 (2006) 226-231.
|
[14] |
T.H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses, Clin. Microbiol. Rev. 22 (2009) 240-273, TableofContents.
|
[15] |
J.K. Dowling, L.A.J. O’Neill, Biochemical regulation of the inflammasome, Crit. Rev. Biochem. Mol. Biol. 47 (2012) 424-443.
|
[16] |
W. Jun, H. Makino, Innate immunity in diabetes and diabetic nephropathy, Nat. Rev. Nephrol. 12 (2016) 13-26.
|
[17] |
M. Lamkanfi, V.M. Dixit, Mechanisms and functions of inflammasomes, Cell 157 (2014) 1013-1022.
|
[18] |
M. Lin, S.C.W. Tang, Toll-like receptors: Sensing and reacting to diabetic injury in the kidney, Nephrol Dial Transplant 29 (2014) 746-754.
|
[19] |
K.L. Rock, E. Latz, F. Ontiveros, et al., The sterile inflammatory response, Annu. Rev. Immunol. 28 (2010) 321-342.
|
[20] |
A.L. Blasius, B. Beutler, Intracellular toll-like receptors, Immunity 32 (2010) 305-315.
|
[21] |
R. Medzhitov, Toll-like receptors and innate immunity, Nat. Rev. Immunol. 1 (2001) 135-145.
|
[22] |
S. Uematsu, S. Akira, Toll-like receptors and innate immunity, J. Mol. Med. 84 (2006) 712-725.
|
[23] |
Y. Xu, X. Tao, B. Shen, et al., Structural basis for signal transduction by the Toll/interleukin-1 receptor domains, Nature 408 (2000) 111-115.
|
[24] |
T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors, Nat. Immunol. 11 (2010) 373-384.
|
[25] |
D. De Nardo, Toll-like receptors: Activation, signalling and transcriptional modulation, Cytokine 74 (2015) 181-189.
|
[26] |
E.M.Y. Moresco, D. LaVine, B. Beutler, Toll-like receptors, Curr. Biol. 21 (2011) R488-R493.
|
[27] |
S. Devaraj, M.R. Dasu, J. Rockwood, et al., Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state, J. Clin. Endocrinol. Metab. 93 (2008) 578-583.
|
[28] |
M.R. Dasu, S. Devaraj, S. Park, et al., Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects, Diabetes Care 33 (2010) 861-868.
|
[29] |
X.H. Xu, P.K. Shah, E. Faure, et al., Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL, Circulation 104 (2001) 3103-3108.
|
[30] |
M. Koc, A. Toprak, H. Arikan, et al., Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: Relation with inflammation, Nephrol Dial Transplant 26 (2011) 955-963.
|
[31] |
R. Perez-Morales, M. Del Pino, J. Valdivielso, et al., Inflammation in diabetic kidney disease, Nephron 143 (2019) 12-16.
|
[32] |
H.J. Brown, H.R. Lock, T.G.A.M. Wolfs, et al., Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2, J. Am. Soc. Nephrol. 18 (2007) 1732-1739.
|
[33] |
B. Kruger, S. Krick, N. Dhillon, et al., Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 3390-3395.
|
[34] |
H. Wu, G. Chen, K.R. Wyburn, et al., TLR4 activation mediates kidney ischemia/reperfusion injury, J. Clin. Invest. 117 (2007) 2847-2859.
|
[35] |
J.C. Leemans, L. Kors, H.J. Anders, et al., Pattern recognition receptors and the inflammasome in kidney disease, Nat. Rev. Nephrol. 10 (2014) 398-414.
|
[36] |
M. Lin, W.H. Yiu, H.J. Wu, et al., Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy, J. Am. Soc. Nephrol. 23 (2012) 86-102.
|
[37] |
H. Mudaliar, C. Pollock, U. Panchapakesan, Role of toll-like receptors in diabetic nephropathy, Clin. Sci. 126 (2014) 685-694.
|
[38] |
Y.J. Liang, J.H. Jian, Y. Liu, et al., Advanced glycation end products-induced apoptosis attenuated by PPARδ activation and epigallocatechin gallate through NF-κB pathway in human embryonic kidney cells and human mesangial cells, Diabetes/metabolism Res. Rev. 26 (2010) 406-416.
|
[39] |
A. Kumar, K.S. Hawkins, M.A. Hannan, et al., Activation of PKC-βI in glomerular mesangial cells is associated with specific NF-κB subunit translocation, Am. J. Physiol. Ren. Physiol. 281 (2001) F613-F619.
|
[40] |
F.T.H. Lee, Z. Cao, D.M. Long, et al., Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy, J. Am. Soc. Nephrol. 15 (2004) 2139-2151.
|
[41] |
S. Pillarisetti, U. Saxena, Role of oxidative stress and inflammation in the origin of Type 2 diabetes - a paradigm shift, Expert Opin. Ther. Targets 8 (2004) 401-408.
|
[42] |
H. Mudaliar, C. Pollock, J. Ma, et al., The role of TLR2 and 4-mediated inflammatory pathways in endothelial cells exposed to high glucose, PLoS One 9 (2014), e108844.
|
[43] |
Y. Liu, Z. Xu, F. Ma, et al., Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway, Biomed. Pharmacother. 107 (2018) 1393-1401.
|
[44] |
S. Devaraj, P. Tobias, I. Jialal, Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes, Cytokine 55 (2011) 441-445.
|
[45] |
M.K. Mohammad, M. Morran, B. Slotterbeck, et al., Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse, Int Immunol. 18 (2006) 1101-1113.
|
[46] |
P.P.C. Souza, U.H. Lerner, Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation, Front. Immunol. 10 (2019) 1663.
|
[47] |
T.T. Braga, M. Correa-Costa, Y.F.S. Guise, et al., MyD88 signaling pathway is involved in renal fibrosis by favoring a T_H2 immune response and activating alternative M2 macrophages, Mol. Med. 18 (2012) 1231-1239.
|
[48] |
T. Hosoi, S. Yokoyama, S. Matsuo, et al., Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice, PLoS One 5 (2010), e12537.
|
[49] |
P.L. Bollyky, J.B. Bice, I.R. Sweet, et al., The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury, PLoS One 4 (2009), e5063.
|
[50] |
U. Panchapakesan, C. Pollock, The role of toll-like receptors in diabetic kidney disease, Curr. Opin. Nephrol. Hypertens. 27 (2018) 30-34.
|
[51] |
Y. Tong, J. Chuan, L. Bai, et al., The protective effect of shikonin on renal tubular epithelial cell injury induced by high glucose, Biomed. Pharmacother. 98 (2018) 701-708.
|
[52] |
F. Li, N. Yang, L. Zhang, et al., Increased expression of toll-like receptor 2 in rat diabetic nephropathy, Am. J. Nephrol. 32 (2010) 179-186.
|
[53] |
Q. Lu, W. Wang, M. Zhang, et al., ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy, Exp. Ther. Med. 17 (2019) 835-846.
|
[54] |
I. Jialal, H. Kaur, The role of toll-like receptors in diabetes-induced inflammation: Implications for vascular complications, Curr. Diabetes Rep. 12 (2012) 172-179.
|
[55] |
M.R. Dasu, S. Devaraj, L. Zhao, et al., High glucose induces toll-like receptor expression in human monocytes: Mechanism of activation, Diabetes 57 (2008) 3090-3098.
|
[56] |
W.H. Yiu, M. Lin, S.C. Tang, Toll-like receptor activation: From renal inflammation to fibrosis, Kidney Int. Suppl. 4 (2014) 20-25.
|
[57] |
A. Lartigue, N. Colliou, S. Calbo, et al., Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus, J. Immunol. 183 (2009) 6207-6216.
|
[58] |
M. Correa-Costa, T.T. Braga, P. Semedo, et al., Pivotal role of toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis, PLoS One 6 (2011), e29004.
|
[59] |
M. Motojima, T. Matsusaka, V. Kon, et al., Fibrinogen that appears in Bowman’s space of proteinuric kidneys in vivo activates podocyte toll-like receptors 2 and 4 in vitro, Nephron Exp. Nephrol. 114 (2009) e39-e47.
|
[60] |
M.C. Banas, B. Banas, K.L. Hudkins, et al., TLR4 links podocytes with the innate immune system to mediate glomerular injury, J. Am. Soc. Nephrol. 19 (2008) 704-713.
|
[61] |
J. Reiser, G. von Gersdorff, M. Loos, et al., Induction of B7-1 in podocytes is associated with nephrotic syndrome, J. Clin. Invest. 113 (2004) 1390-1397.
|
[62] |
D. Verzola, L. Cappuccino, E. D’Amato, et al., Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria, Kidney Int. 86 (2014) 1229-1243.
|
[63] |
J.J. Cha, Y.Y. Hyun, M.H. Lee, et al., Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice, Endocrinology 154 (2013) 2144-2155.
|
[64] |
K. Stadler, I.J. Goldberg, K. Susztak, The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease, Curr. Diab. Rep. 15 (2015), 40.
|
[65] |
A. Cao, L. Wang, X. Chen, et al., Ursodeoxycholic acid ameliorated diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress, Biol. Pharm. Bull. 39 (2016) 1300-1308.
|
[66] |
M. Wei, Z. Li, L. Xiao, et al., Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury, Mol. Immunol. 68 (2015) 261-271.
|
[67] |
H. Kaur, A. Chien, I. Jialal, Hyperglycemia induces Toll like receptor 4 expression and activity in mouse mesangial cells: Relevance to diabetic nephropathy, Am. J. Physiol. Renal Physiol. 303 (2012) F1145-F1150.
|
[68] |
S. Takata, Y. Sawa, T. Uchiyama, et al., Expression of toll-like receptor 4 in glomerular endothelial cells under diabetic conditions, Acta Histochem. Cytochem 46 (2013) 35-42.
|
[69] |
I. Jialal, A.M. Major, S. Devaraj, Global toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy, J. Diabetes Complicat. 28 (2014) 755-761.
|
[70] |
M. Lin, W.H. Yiu, R. Li, et al., The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy, Kidney Int. 83 (2013) 887-900.
|
[71] |
J. Chen, P. Szodoray, M. Zeher, Toll-like receptor pathways in autoimmune diseases, Clin. Rev. Allergy Immunol. 50 (2016) 1-17.
|
[72] |
Q. Chen, X. Guan, X. Zuo, et al., The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases, Acta Pharm. Sin. B 6 (2016) 183-188.
|
[73] |
H. Shi, Y. Che, L. Bai, et al., High mobility group box 1 in diabetic nephropathy, Exp. Ther. Med. 14 (2017) 2431-2433.
|
[74] |
H. Mudaliar, C. Pollock, M.G. Komala, et al., The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules, Am. J. Physiol. Ren. Physiol. 305 (2013) F143-F154.
|
[75] |
Y. Chen, F. Qiao, Y. Zhao, et al., HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose, Int. J. Clin. Exp. Pathol. 8 (2015) 6683-6691.
|
[76] |
B. Chen, Y. Li, Y. Liu, et al., circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells, J. Cell. Physiol. 234 (2019) 21249-21259.
|
[77] |
D. Yao, S. Wang, M. Wang, et al., Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway, Mol. Med. Rep. (2018): 3625-3630.
|
[78] |
J. Jin, J. Gong, L. Zhao, et al., Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux, J. Diabetes 11 (2019) 826-836.
|
[79] |
H.F. Jheng, P.J. Tsai, Y. Chuang, et al., Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy, Dis. Model. Mech. 8 (2015) 1311-1321.
|
[80] |
G. Garibotto, A. Carta, D. Picciotto, et al., Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy, J. Nephrol. 30 (2017) 719-727.
|
[81] |
V.C. Biancardi, G.F. Bomfim, W.L. Reis, et al., The interplay between angiotensin II, TLR4 and hypertension, Pharmacol. Res. 120 (2017) 88-96.
|
[82] |
P.C. Santos, J.E. Krieger, A.C. Pereira, Renin-angiotensin system, hypertension, and chronic kidney disease: Pharmacogenetic implications, J. Pharmacol. Sci. 120 (2012) 77-88.
|
[83] |
B.S. van Thiel, I. van der Pluijm, L. te Riet, et al., The renin-angiotensin system and its involvement in vascular disease, Eur. J. Pharmacol. 763 (2015) 3-14.
|
[84] |
M. Pacurari, R. Kafoury, P.B. Tchounwou, et al., The renin-angiotensin-aldosterone system in vascular inflammation and remodeling, Int. J. Inflamm. 2014 (2014) 1-13.
|
[85] |
T. Bondeva, T. Roger, G. Wolf, Differential regulation of Toll-like receptor 4 gene expression in renal cells by angiotensin II: Dependency on AP1 and PU.1 transcriptional sites, Am. J. Nephrol. 27 (2007) 308-314.
|
[86] |
J. Lv, Q. Chen, Y. Shao, et al., Cross-talk between angiotensin-II and toll-like receptor 4 triggers a synergetic inflammatory response in rat mesangial cells under high glucose conditions, Biochem. Biophys. Res. Commun. 459 (2015) 264-269.
|
[87] |
Y. Wang, Q. Fang, Y. Jin, et al., Blockade of myeloid differentiation 2 attenuates diabetic nephropathy by reducing activation of the renin-angiotensin system in mouse kidneys, Br. J. Pharmacol. 176 (2019) 2642-2657.
|
[88] |
E.J. Hennessy, A.E. Parker, L.A.J. O’Neill, Targeting toll-like receptors: Emerging therapeutics? Nat. Rev. Drug Discov. 9 (2010) 293-307.
|
[89] |
Y.C. Chang, W. Kao, W. Wang, et al., Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses, FASEB J. 23 (2009) 3078-3088.
|
[90] |
T.W. Rice, A.P. Wheeler, G.R. Bernard, et al., A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis, Crit. Care Med. 38 (2010) 1685-1694.
|
[91] |
Z.M. Liu, H.Y. Zheng, L.H. Chen, et al., Low expression of miR-203 promoted diabetic nephropathy via increasing TLR4, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 5627-5634.
|
[92] |
T. Ji, Y. Wang, Y. Zhu, et al., Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy, J. Cell. Physiol. 234 (2019) 6633-6641.
|
[93] |
H. Yang, H.S. Hreggvidsdottir, K. Palmblad, et al., A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 11942-11947.
|
[94] |
H.J. Anders, D.A. Muruve, The inflammasomes in kidney disease, J. Am. Soc. Nephrol. 22 (2011) 1007-1018.
|
[95] |
K. Schroder, J. Tschopp, The inflammasomes, Cell 140 (2010) 821-832.
|
[96] |
S.K. Vanaja, V.A.K. Rathinam, K.A. Fitzgerald, Mechanisms of inflammasome activation: Recent advances and novel insights, Trends Cell Biol. 25 (2015) 308-315.
|
[97] |
Y. Zhong, A. Kinio, M. Saleh, Functions of NOD-like receptors in human diseases, Front. Immunol. 4 (2013), 333.
|
[98] |
J.P.Y. Ting, R.C. Lovering, E.S. Alnemri, et al., The NLR gene family: A standard nomenclature, Immunity 28 (2008) 285-287.
|
[99] |
E. Meunier, P. Broz, Evolutionary convergence and divergence in NLR function and structure, Trends Immunol. 38 (2017) 744-757.
|
[100] |
A.A. Shigeoka, A. Kambo, J.C. Mathison, et al., Nod1 and Nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury, J. Immunol. 184 (2010) 2297-2304.
|
[101] |
L.H. Travassos, L.A.M. Carneiro, M. Ramjeet, et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nat. Immunol. 11 (2010) 55-62.
|
[102] |
F. Martinon, K. Burns, J. Tschopp, The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell 10 (2002) 417-426.
|
[103] |
W. Huang, F. Gou, Y. Long, et al., High glucose and lipopolysaccharide activate NOD1- RICK-NF-κB inflammatory signaling in mesangial cells, Exp. Clin. Endocrinol. Diabetes 124 (2016) 512-517.
|
[104] |
S.L. Rivers, A. Klip, A. Giacca, NOD1: An interface between innate immunity and insulin resistance, Endocrinology 160 (2019) 1021-1030.
|
[105] |
P. Du, B. Fan, H. Han, et al., NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy, Kidney Int. 84 (2013) 265-276.
|
[106] |
B. Haraldsson, J. Nystrom, W.M. Deen, Properties of the glomerular barrier and mechanisms of proteinuria, Physiol. Rev. 88 (2008) 451-487.
|
[107] |
J. Shang, Y. Zhang, Y. Jiang, et al., NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy, Biochem. Biophys. Res. Commun. 484 (2017) 435-441.
|
[108] |
Y. Qiu, L. Tang, Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy, Pharmacol. Res. 114 (2016) 251-264.
|
[109] |
T. Xu, Y. Du, X. Fang, et al., New insights into Nod-like receptors (NLRs) in liver diseases, Int. J. Physiol. Pathophysiol. Pharmacol. 10 (2018) 1-16.
|
[110] |
C.R. Lupfer, P.K. Anand, X. Qi, et al., Editorial: Role of NOD-like receptors in infectious and immunological diseases, Front. Immunol. 11 (2020), 923.
|
[111] |
C. Ram, A.K. Jha, A. Ghosh, et al., Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches, Eur. J. Pharmacol. 885 (2020), 173503.
|
[112] |
H.J. Kim, D.W. Lee, K. Ravichandran, et al., NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury, J. Pharmacol. Exp. Ther. 346 (2013) 465-472.
|
[113] |
N. Riteau, L. Baron, B. Villeret, et al., ATP release and purinergic signaling: A common pathway for particle-mediated inflammasome activation, Cell Death Dis. 3 (2012), e403.
|
[114] |
G. Lorenz, M.N. Darisipudi, H.J. Anders, Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis, Nephrol. Dial. Transplant 29 (2014) 41-48.
|
[115] |
K. Yamasaki, J. Muto, K.R. Taylor, et al., NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury, J. Biol. Chem. 284 (2009) 12762-12771.
|
[116] |
N. Kayagaki, I.B. Stowe, B.L. Lee, et al., Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling, Nature 526 (2015) 666-671.
|
[117] |
H. Yaribeygi, N. Katsiki, A.E. Butler, et al., Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys, Drug Discov. Today 24 (2019) 256-262.
|
[118] |
R.C. Coll, A.A.B. Robertson, J.J. Chae, et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases, Nat. Med. 21 (2015) 248-255.
|
[119] |
K. Shahzad, F. Bock, W. Dong, et al., Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy, Kidney Int. 87 (2015) 74-84.
|
[120] |
M. Wu, W. Han, S. Song, et al., NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice, Mol. Cell. Endocrinol. 478 (2018) 115-125.
|
[121] |
P. Gao, X. Meng, H. Su, et al., Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy, Biochim. Biophys. Acta BBA Mol. Cell Res. 1843 (2014) 2448-2460.
|
[122] |
M. Wu, Z. Yang, C. Zhang, et al., Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy, Metabolism 118 (2021), 154748.
|
[123] |
H. Jiang, H. He, Y. Chen, et al., Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders, J. Exp. Med. 214 (2017) 3219-3238.
|
[124] |
Y. Han, X. Xu, C. Tang, et al., Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis, Redox Biol. 16 (2018) 32-46.
|
[125] |
N. Li, T. Zhao, Y. Cao, et al., Tangshen Formula Attenuates Diabetic Kidney Injury by Imparting Anti-pyroptotic Effects via the TXNIP-NLRP3-GSDMD Axis, Front Pharmacol. 11 (2020) 623489.
|
[126] |
L. Zhou, W. Huang, Y. Xu, et al., Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: Implications for diabetic nephropathy, J. Diabetes Res. 2018 (2018) 1-15.
|
[127] |
P. Gao, F. He, H. Tang, et al., NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia, J. Diabetes Res. 2015 (2015), 504761.
|
[128] |
H. Feng, J. Gu, F. Gou, et al., High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells, J. Diabetes Res. 2016 (2016) 1-11.
|
[129] |
S. Wang, X. Zhao, S. Yang, et al., Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway, Chem. Biol. Interact. 278 (2017) 48-53.
|
[130] |
C.Y.R. Tan, W. Qi, Z. Yuan, et al., Thioredoxin-interacting protein: A potential therapeutic target for treatment of progressive fibrosis in diabetic nephropathy, Nephron 129 (2015) 109-127.
|
[131] |
K. Chen, J. Zhang, W. Zhang, et al., ATP-P2X4 signaling mediates NLRP3 inflammasome activation: A novel pathway of diabetic nephropathy, Int. J. Biochem. Cell Biol. 45 (2013) 932-943.
|
[132] |
A. Solini, S. Menini, C. Rossi, et al., The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: Possible role of NLRP3 inflammasome activation, J. Pathol. 231 (2013) 342-353.
|
[133] |
C. Gerard, B.J. Rollins, Chemokines and disease, Nat. Immunol. 2 (2001) 108-115.
|
[134] |
A. Rot, U.H. von Andrian, Chemokines inInnate andAdaptiveHostDefense: Basic chemokinese grammar for immune cells, Annu. Rev. Immunol. 22 (2004) 891-928.
|
[135] |
B.J. Rollins, Chemokines, Blood 90 (1997) 909-928.
|
[136] |
B. Moser, P. Loetscher, Lymphocyte traffic control by chemokines, Nat. Immunol. 2 (2001) 123-128.
|
[137] |
M.J. Stone, J.A. Hayward, C. Huang, et al., Mechanisms of Regulation of the Chemokine-Receptor Network, Int. J. Mol. Sci. 18 (2017).
|
[138] |
E. Galliera, M. Corsi, R. Bonecchi, et al., Chemokines as pharmacological targets, Mini Rev. Med. Chem. 8 (2008) 638-646.
|
[139] |
S. Segerer, P.J. Nelson, D.SCHLO[Combining Diaeresis]NDORFF, Chemokines, chemokine receptors, and renal disease, J. Am. Soc. Nephrol. 11 (2000) 152-176.
|
[140] |
A.C.K. Chung, H.Y. Lan, Chemokines in renal injury, J. Am. Soc. Nephrol. 22 (2011) 802-809.
|
[141] |
H. Li, Y. You, B. Shao, et al., Roles and crosstalks of macrophages in diabetic nephropathy, Front. Immunol. 13 (2022), 1015142.
|
[142] |
C. Sassy-Prigent, D. Heudes, C. Mandet, et al., Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats, Diabetes 49 (2000) 466-475.
|
[143] |
T. Chang, J.W. Chen, The role of chemokines and chemokine receptors in diabetic nephropathy, Int. J. Mol. Sci. 21 (2020), 3172.
|
[144] |
Y. Shi, Y. Wang, Q. Li, et al., Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases, Nat. Rev. Nephrol. 14 (2018) 493-507.
|
[145] |
D. Sanajou, A.G. Haghjo, H. Argani, et al., FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats, J. Physiol. Biochem. 74 (2018) 467-478.
|
[146] |
S. Giunti, F. Barutta, P. Cavallo Perin, et al., Targeting the MCP-1/CCR2 system in diabetic kidney disease, Curr. Vasc. Pharmacol. 8 (2010) 849-860.
|
[147] |
E.Y. Lee, C.H. Chung, C.C. Khoury, et al., The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability, Am. J. Physiol. Ren. Physiol. 297 (2009) F85-F94.
|
[148] |
B. Satirapoj, Tubulointerstitial biomarkers for diabetic nephropathy, J. Diabetes Res. 2018 (2018) 1-6.
|
[149] |
F.Y. Chow, D.J. Nikolic-Paterson, E. Ozols, et al., Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice, Kidney Int. 69 (2006) 73-80.
|
[150] |
J. Park, D.R. Ryu, J. Li, et al., MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells, Am. J. Physiol. Ren. Physiol. 295 (2008) F749-F757.
|
[151] |
C.K. Wong, A.W.Y. Ho, P.C.Y. Tong, et al., Aberrant expression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy, J. Clin. Immunol. 28 (2008) 36-43.
|
[152] |
N. Nowak, J. Skupien, A.M. Smiles, et al., Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development, Kidney Int. 93 (2018) 1198-1206.
|
[153] |
B. Satirapoj, R. Dispan, P. Radinahamed, et al., Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease, BMC Nephrol. 19 (2018) 1-10.
|
[154] |
G.N. Nadkarni, V. Rao, F. Ismail-Beigi, et al., Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: The ACCORD trial, Clin. J. Am. Soc. Nephrol. 11 (2016) 1343-1352.
|
[155] |
F. Chow, E. Ozols, D.J. Nikolic-Paterson, et al., Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury, Kidney Int. 65 (2004) 116-128.
|
[156] |
K.F. Hilgers, A. Hartner, M. Porst, et al., Monocyte chemoattractant protein-1 and macrophage infiltration in hypertensive kidney injury, Kidney Int. 58 (2000) 2408-2419.
|
[157] |
S. Mezzano, A. Droguett, M.E. Burgos, et al., Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy, Kidney Int. 64 (2003) S64-S70.
|
[158] |
Z. Yang, Z. Guo, J. Dong, et al., miR-374a regulates inflammatory response in diabetic nephropathy by targeting MCP-1 expression, Front. Pharmacol. 9 (2018), 900.
|
[159] |
X. Xu, X. Qi, Y. Shao, et al., High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway, Inflamm. Res. 65 (2016) 655-664.
|
[160] |
X. Chen, W. Liu, Y. Wang, et al., Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways, J. Diabetes Complicat. 30 (2016) 760-769.
|
[161] |
C. Tanifuji, Y. Suzuki, W.M. Geot, et al., Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP- expression of proximal tubular cells, Antioxid. Redox Signal. 7 (2005) 1261-1268.
|
[162] |
H. Zhang, Z. Jiang, J. Chang, et al., Role of NAD(P)H oxidase in transforming growth factor-β1-induced monocyte chemoattractant protein-1 and interleukin-6 expression in rat renal tubular epithelial cells, Nephrology 14 (2009) 302-310.
|
[163] |
T. Matsui, S.I. Yamagishi, M. Takeuchi, et al., Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation, Biochem. Biophys. Res. Commun. 385 (2009) 269-272.
|
[164] |
T. Matsui, S. Yamagishi, S. Ueda, et al., Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-γ activation, J. Int. Med. Res. 35 (2007) 482-489.
|
[165] |
J. Cheng, M.M. Diaz Encarnacion, G.M. Warner, et al., TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process, Am J Physiol Cell Physiol. 289 (2005) C959-970.
|
[166] |
G. Wolf, T. Jocks, G. Zahner, et al., Existence of a regulatory loop between MCP-1 and TGF-β in glomerular immune injury, Am. J. Physiol. Ren. Physiol. 283 (2002) F1075-F1084.
|
[167] |
S. Wu, C. Lu, L. Dong, et al., Signal transduction involved in CTGF-induced production of chemokines in mesangial cells, Growth Factors 26 (2008) 192-200.
|
[168] |
S. Kato, V.A. Luyckx, M. Ots, et al., Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats, Kidney Int. 56 (1999) 1037-1048.
|
[169] |
B. Amann, R. Tinzmann, B. Angelkort, ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1, Diabetes Care. 26 (2003) 2421-2425.
|
[170] |
J.A. Moreno, C. Gomez-Guerrero, S. Mas, et al., Targeting inflammation in diabetic nephropathy: A tale of hope, Expert Opin. Investig. Drugs 27 (2018) 917-930.
|
[171] |
K.R. Tuttle, F.C. Brosius, S.G. Adler, et al., JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial, Nephrol Dial Transplant 33 (2018) 1950-1959.
|
[172] |
S.J. Seok, E.S. Lee, G.T. Kim, et al., Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice, Nephrol Dial Transplant 28 (2013) 1700-1710.
|
[173] |
Y.S. Kang, M.H. Lee, H.K. Song, et al., CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice, Kidney Int. 78 (2010) 883-894.
|
[174] |
T. Sullivan, Z. Miao, D.J. Dairaghi, et al., CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice, Am. J. Physiol. Ren. Physiol. 305 (2013) F1288-F1297.
|
[175] |
K. Budge, S. Dellepiane, S.M.W. Yu, et al., Complement, a therapeutic target in diabetic kidney disease, Front. Med. 7 (2021), 599236.
|
[176] |
J.M. Thurman, Complement in kidney disease: Core curriculum 2015, Am. J. Kidney Dis. 65 (2015) 156-168.
|
[177] |
T. Wada, M. Nangaku, Novel roles of complement in renal diseases and their therapeutic consequences, Kidney Int. 84 (2013) 441-450.
|
[178] |
A. Flyvbjerg, The role of the complement system in diabetic nephropathy, Nat. Rev. Nephrol. 13 (2017) 311-318.
|
[179] |
C. Mason, A. Tarr, Human lectins and their roles in viral infections, Molecules 20 (2015) 2229-2271.
|
[180] |
M.W. Turner, The role of mannose-binding lectin in health and disease, Mol. Immunol. 40 (2003) 423-429.
|
[181] |
S. Thiel, T. Vorup-Jensen, C.M. Stover, et al., A second serine protease associated with mannan-binding lectin that activates complement, Nature 386 (1997) 506-510.
|
[182] |
A. Flyvbjerg, Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily, Nat. Rev. Endocrinol. 6 (2010) 94-101.
|
[183] |
D. Ricklin, G. Hajishengallis, K. Yang, et al., Complement: A key system for immune surveillance and homeostasis, Nat. Immunol. 11 (2010) 785-797.
|
[184] |
D.R. Mathern, P.S. Heeger, Molecules great and small, Clin. J. Am. Soc. Nephrol. 10 (2015) 1636-1650.
|
[185] |
W. Zhou, J.E. Marsh, S.H. Sacks, Intrarenal synthesis of complement, Kidney Int. 59 (2001) 1227-1235.
|
[186] |
J. Fortpied, D. Vertommen, E. Van Schaftingen, Binding of mannose-binding lectin to fructosamines: A potential link between hyperglycaemia and complement activation in diabetes, Diabetes/metabolism Res. Rev. 26 (2010) 254-260.
|
[187] |
X. Qin, A. Goldfine, N. Krumrei, et al., Glycation inactivation of the complement regulatory protein CD59, Diabetes 53 (2004) 2653-2661.
|
[188] |
A.A. Satoskar, J.P. Shapiro, C.N. Bott, et al., Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli, Mod. Pathol. 25 (2012) 709-721.
|
[189] |
X.Q. Li, D.Y. Chang, M. Chen, et al., Complement activation in patients with diabetic nephropathy, Diabetes Metab. 45 (2019) 248-253.
|
[190] |
Y. Huang, J. Xu, X. Wu, et al., High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy, Front. Endocrinol. 10 (2019), 459.
|
[191] |
T.K. Hansen, L. Tarnow, S. Thiel, et al., Association between mannose-binding lectin and vascular complications in type 1 diabetes, Diabetes 53 (2004) 1570-1576.
|
[192] |
P. Hovind, T.K. Hansen, L. Tarnow, et al., Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes, Diabetes 54 (2005) 1523-1527.
|
[193] |
T.K. Hansen, S. Thiel, S.T. Knudsen, et al., Elevated levels of mannan-binding lectin in patients with type 1 diabetes, J. Clin. Endocrinol. Metab. 88 (2003) 4857-4861.
|
[194] |
J.A. Ostergaard, S. Thiel, M. Lajer, et al., Increased all-cause mortality in patients with type 1 diabetes and high-expression mannan-binding lectin genotypes: a 12-year follow-up study, Diabetes Care. 38 (2015) 1898-1903.
|
[195] |
J. OEstergaard, S. Thiel, M. Gadjeva, et al., Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice, Diabetologia 50 (2007) 1541-1549.
|
[196] |
J.A. OEstergaard, M.M. Ruseva, T.H. Malik, et al., Increased autoreactivity of the complement-activating molecule mannan-binding lectin in a type 1 diabetes model, J. Diabetes Res. 2016 (2016) 1-7.
|
[197] |
J.A. OEstergaard, M. Bjerre, F. Dagnaes-Hansen, et al., Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes, Scand. J. Immunol. 77 (2013) 187-194.
|
[198] |
K.I. Woroniecka, A.S. Park, D. Mohtat, et al., Transcriptome analysis of human diabetic kidney disease, Diabetes. 60 (2011) 2354-2369.
|
[199] |
T. Fujita, S. Hemmi, M. Kajiwara, et al., Complement-mediated chronic inflammation is associated with diabetic microvascular complication, Diabetes Metab. Res. Rev. 29 (2013) 220-226.
|
[200] |
X. Xiao, B. Ma, B. Dong, et al., Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice, J. Autoimmun. 32 (2009) 85-93.
|
[201] |
L. Yang, S. Brozovic, J. Xu, et al., Inflammatory gene expression in OVE26 diabetic kidney during the development of nephropathy, Nephron Exp. Nephrol. 119 (2011) e8-e20.
|
[202] |
M. Morigi, M. Galbusera, S. Gastoldi, et al., Alternative pathway activation of complement by shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis, J. Immunol. 187 (2011) 172-180.
|
[203] |
S.M. Tan, M. Ziemann, V. Thallas-Bonke, et al., Complement C5a induces renal injury in diabetic kidney disease by disrupting mitochondrial metabolic agility, Diabetes 69 (2020) 83-98.
|
[204] |
Z. Wang, Z. Wang, Z. Zhou, et al., Crucial genes associated with diabetic nephropathy explored by microarray analysis, BMC Nephrol. 17 (2016) 1-7.
|
[205] |
T. Vaisar, B. Durbin-Johnson, K. Whitlock, et al., Erratum. urine complement proteins and the risk of kidney disease progression and mortality in type 2 diabetes. diabetes care 2018;41: 2361-2369, Diabetes Care 42 (2019) 1155.2-1155.
|
[206] |
M. Morigi, L. Perico, D. Corna, et al., C3a receptor blockade protects podocytes from injury in diabetic nephropathy, JCI Insight 5 (2020).
|
[207] |
L. Li, L. Chen, J. Zang, et al., C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease, Metabolism 64 (2015) 597-610.
|
[208] |
T. Fujita, H. Ohi, K. Komatsu, et al., Complement activation accelerates glomerular injury in diabetic rats, Nephron 81 (1999) 208-214.
|
[209] |
W.H. Yiu, R. Li, D.W.L. Wong, et al., Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy, Nephrol. Dial. Transplant. 33 (2018) 1323-1332.
|