Citation: | Xixi Song, Zina Fredj, Yuqiao Zheng, Hongyong Zhang, Guoguang Rong, Sumin Bian, Mohamad Sawan. Biosensors for waterborne virus detection: Challenges and strategies[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1252-1268. doi: 10.1016/j.jpha.2023.08.020 |
A.M. Gall, B.J. Marinas, Y. Lu, et al., Waterborne viruses: A barrier to safe drinking water, PLoS Pathog. 11 (2015), e1004867.
|
N. Kumar, Y. Hu, S. Singh, et al., Emerging biosensor platforms for the assessment of water-borne pathogens, Analyst 143 (2018) 359-373.
|
M. Guo, W. Tao, R.A. Flavell, et al., Potential intestinal infection and faecal-oral transmission of SARS-CoV-2, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 269-283.
|
J. Hrdy, P. Vasickova, Virus detection methods for different kinds of food and water samples - The importance of molecular techniques, Food Contr. 134 (2022), 108764.
|
K.R. Wigginton, Y. Ye, R.M. Ellenberg, Emerging investigators series: The source and fate of pandemic viruses in the urban water cycle, Environ. Sci.: Water Res. Technol. 1 (2015) 735-746.
|
M.G. Jimenez-Rodriguez, F. Silva-Lance, L. Parra-Arroyo, et al., Biosensors for the detection of disease outbreaks through wastewater-based epidemiology, Trac Trends Anal. Chem. 155 (2022), 116585.
|
D.F. Nieuwenhuijse, M.P.G. Koopmans, Metagenomic sequencing for surveillance of food- and waterborne viral diseases, Front. Microbiol. 8 (2017), 230.
|
M. Pilevar, K.T. Kim, W.H. Lee, Recent advances in biosensors for detecting viruses in water and wastewater, J. Hazard. Mater. 410 (2021), 124656.
|
S. Ahuja, M.S. Kumar, R. Nandeshwar, et al., Longer amplicons provide better sensitivity for electrochemical sensing of viral nucleic acid in water samples using PCB electrodes, Sci. Rep. 12 (2022), 8814.
|
A. Tsopela, A. Laborde, L. Salvagnac, et al., Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis, Biosens. Bioelectron. 79 (2016) 568-573.
|
Z. Kotsiri, J. Vidic, A. Vantarakis, Applications of biosensors for bacteria and virus detection in food and water-a systematic review, J. Environ. Sci. 111 (2022) 367-379.
|
F. Ejeian, P. Etedali, H.-A. Mansouri-Tehrani, et al., Biosensors for wastewater monitoring: A review, Biosens. Bioelectron. 118 (2018) 66-79.
|
K. Mao, H. Zhang, Y. Pan, et al., Biosensors for wastewater-based epidemiology for monitoring public health, Water Res. 191 (2021), 116787.
|
S. Srikanth, U.S. Jayapiriya, S.K. Dubey, et al., A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria, iScience 25 (2022), 105388.
|
A. Vishwakarma, R. Lal, M. Ramya, Aptamer-based approaches for the detection of waterborne pathogens, Int. Microbiol. 24 (2021) 125-140.
|
S.M. Sheta, S.M. El-Sheikh, Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses, Anal. Biochem. 648 (2022), 114680.
|
M.V.A. Corpuz, A. Buonerba, G. Vigliotta, et al., Viruses in wastewater: Occurrence, abundance and detection methods, Sci. Total Environ. 745 (2020), 140910.
|
C. Twigg, J. Wenk, Review and meta-analysis: SARS-CoV-2 and enveloped virus detection in feces and wastewater, ChemBioEng Rev. 9 (2022) 129-145.
|
D. Kadadou, L. Tizani, V.S. Wadi, et al., Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater, J. Environ. Chem. Eng. 10 (2022), 107070.
|
N. Bhardwaj, S.K. Bhardwaj, D. Bhatt, et al., Optical detection of waterborne pathogens using nanomaterials, Trac Trends Anal. Chem. 113 (2019) 280-300.
|
R.C. Groendahl-Rosado, E. Yarovitsyna, E. Trettenes, et al., A one year study on the concentrations of norovirus and enteric adenoviruses in wastewater and A surface drinking water source in Norway, Food Environ. Virol. 6 (2014) 232-245.
|
I.M. Sayed, Dual infection of hepatitis A virus and hepatitis E virus-What is known? Viruses 15 (2023), 298.
|
K. Kumthip, P. Khamrin, H. Ushijima, et al., Detection of six different human enteric viruses contaminating environmental water in Chiang Mai, Thailand, Microbiol. Spectr. 11 (2023) e03512-e03522.
|
T. Prado, A. de Castro Bruni, M.R.F. Barbosa, et al., Performance of wastewater reclamation systems in enteric virus removal, Sci. Total Environ. 678 (2019) 33-42.
|
A.I. Silverman, A.B. Boehm, Systematic review and meta-analysis of the persistence of enveloped viruses in environmental waters and wastewater in the absence of disinfectants, Environ. Sci. Technol. 55 (2021) 14480-14493.
|
F. Cariti, A. Tunas Corzon, X. Fernandez-Cassi, et al., Wastewater reveals the spatiotemporal spread of SARS-CoV-2 in the canton of Ticino (switzerland) during the onset of the COVID-19 pandemic, ACS ES&T Water 2 (2022) 2194-2200.
|
M. Gross, Wastewater warnings, Curr. Biol. 31 (2021) R267-R269.
|
K. Jenns, H.P. Sassi, R. Zhou, et al., Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma, Trends Food Sci. Technol. 124 (2022) 323-333.
|
L. Chen, Y. Deng, S. Dong, et al., The occurrence and control of waterborne viruses in drinking water treatment: A review, Chemosphere 281 (2021), 130728.
|
R.J. Drout, L. Robison, Z. Chen, et al., Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem. 1 (2019) 304-317.
|
C. Teng, K. Zhou, L. Liao, et al., Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater, Sci. Total Environ. 838 (2022), 156462.
|
E.M. Symonds, M.E. Verbyla, J.O. Lukasik, et al., A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia, Water Res. 65 (2014) 257-270.
|
X. Huang, Y. Zhu, E. Kianfar, Nano Biosensors: Properties, applications and electrochemical techniques, J. Mater. Res. Technol. 12 (2021) 1649-1672.
|
Y. Alhamoud, D. Yang, S.S. Fiati Kenston, et al., Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications, Biosens. Bioelectron. 141 (2019), 111418.
|
J. Ashley, M.-A. Shahbazi, K. Kant, et al., Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives, Biosens. Bioelectron. 91 (2017) 606-615.
|
T. Ozer, B.J. Geiss, C.S. Henry, Review-Chemical and biological sensors for viral detection, J. Electrochem. Soc. 167 (2020), 037523.
|
A. Karimzadeh, M. Hasanzadeh, N. Shadjou, et al., Peptide based biosensors, Trac Trends Anal. Chem. 107 (2018) 1-20.
|
S.H. Baek, M.W. Kim, C.Y. Park, et al., Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides, Biosens. Bioelectron. 123 (2019) 223-229.
|
L. Yuan, L. Liu, Peptide-based electrochemical biosensing, Sens. Actuat. B 344 (2021), 130232.
|
S. Kim, S. Lee, H.J. Lee, An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein, Sens. Actuat. B 273 (2018) 1029-1036.
|
R. Chand, S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus, Biosens. Bioelectron. 98 (2017) 47-53.
|
H. Zhao, W. Xie, R.-L. Zhang, et al., Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites, Talanta 237 (2022), 122896.
|
P. Weerathunge, R. Ramanathan, V.A. Torok, et al., Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor, Anal. Chem. 91 (2019) 3270-3276.
|
D. Alzate, M.C. Lopez-Osorio, F. Cortes-Mancera, et al., Detection of hepatitis E virus genotype 3 in wastewater by an electrochemical genosensor, Anal. Chim. Acta 1221 (2022), 340121.
|
T. Ngamdee, L.S. Yin, S. Vongpunsawad, et al., Target Induced-DNA strand displacement reaction using gold nanoparticle labeling for hepatitis E virus detection, Anal. Chim. Acta 1134 (2020) 10-17.
|
O. Adegoke, M.-W. Seo, T. Kato, et al., An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus, Biosens. Bioelectron. 86 (2016) 135-142.
|
N. Nawaz, N.K. Abu Bakar, H.N. Muhammad Ekramul Mahmud, et al., Molecularly imprinted polymers-based DNA biosensors, Anal. Biochem. 630 (2021), 114328.
|
R. Ding, Y. Chen, Q. Wang, et al., Recent advances in quantum dots-based biosensors for antibiotics detection, J. Pharm. Anal. 12 (2022) 355-364.
|
B. Babamiri, A. Salimi, R. Hallaj, A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore, Biosens. Bioelectron. 117 (2018) 332-339.
|
E. Mauriz, M.C. Garcia-Fernandez, L.M. Lechuga, Towards the design of universal immunosurfaces for SPR-based assays: A review, Trac Trends Anal. Chem. 79 (2016) 191-198.
|
Y. Liu, J. Yu, Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review, Microchim. Acta 183 (2016) 1-19.
|
S. Gao, J.M. Guisan, J. Rocha-Martin, Oriented immobilization of antibodies onto sensing platforms - A critical review, Anal. Chim. Acta 1189 (2022), 338907.
|
E. Gonzalez-Fernandez, M. Staderini, N. Avlonitis, et al., Effect of spacer length on the performance of peptide-based electrochemical biosensors for protease detection, Sens. Actuat. B 255 (2018) 3040-3046.
|
M. Yuce, N. Ullah, H. Budak, Trends in aptamer selection methods and applications, Analyst 140 (2015) 5379-5399.
|
H.J. Hwang, M.Y. Ryu, C.Y. Park, et al., High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder, Biosens. Bioelectron. 87 (2017) 164-170.
|
J. Guo, D. Liu, Z. Yang, et al., A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection, Bioelectrochemistry 136 (2020), 107591.
|
A.D. Chowdhury, K. Takemura, T.-C. Li, et al., Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nat. Commun. 10 (2019), 3737.
|
S.H. Baek, C.Y. Park, T.P. Nguyen, et al., Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster, Food Contr. 114 (2020), 107225.
|
W. Sukjee, A. Thitithanyanont, S. Manopwisedjaroen, et al., Virus MIP-composites for SARS-CoV-2 detection in the aquatic environment, Mater. Lett. 315 (2022), 131973.
|
H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, Trac Trends Anal. Chem. 135 (2021), 116178.
|
J. Fei, W. Dou, G. Zhao, A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles, Microchim. Acta 182 (2015) 2267-2275.
|
D. Tang, J. Tang, B. Su, et al., Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array, Biosens. Bioelectron. 25 (2010) 1658-1662.
|
F. De Maio, V. Palmieri, G. Babini, et al., Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2, iScience 24 (2021), 102788.
|
G. Seo, G. Lee, M.J. Kim, et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor, ACS Nano 14 (2020) 5135-5142.
|
N. Dhanalakshmi, T. Priya, S. Thennarasu, et al., Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing, J. Pharm. Anal. 11 (2021) 48-56.
|
F. Liu, Y.H. Kim, D.S. Cheon, et al., Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection, Sens. Actuat. B 186 (2013) 252-257.
|
M. Alafeef, K. Dighe, P. Moitra, et al., Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip, ACS Nano 14 (2020) 17028-17045.
|
H. Jiang, Z. Sun, C. Zhang, et al., 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites, Sens. Actuat. B 354 (2022), 131232.
|
H. L. Chia, C.C. Mayorga-Martinez, M. Pumera, Doping and decorating 2D materials for biosensing: Benefits and drawbacks, Adv. Funct. Mater. 31 (2021), 2102555.
|
A.B. Ganganboina, A.D. Chowdhury, I.M. Khoris, et al., Dual modality sensor using liposome-based signal amplification technique for ultrasensitive norovirus detection, Biosens. Bioelectron. 157 (2020), 112169.
|
C. Jiang, X. Mu, S. Liu, et al., A study of the detection of SARS-CoV-2 ORF1ab gene by the use of electrochemiluminescent biosensor based on dual-probe hybridization, Sensors 22 (2022), 2402.
|
Y. Peng, Y. Pan, Z. Sun, et al., An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA, Biosens. Bioelectron. 186 (2021), 113309.
|
M.S. Kumar, R. Nandeshwar, S.B. Lad, et al., Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes, Sens. Actuat. B 343 (2021), 130169.
|
V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon 7 (2021), e06321.
|
K. Takemura, Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: Optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology, Biosensors 11 (2021), 250.
|
N. Cennamo, L. Pasquardini, F. Arcadio, et al., SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor, Talanta 233 (2021), 122532.
|
P.N. Abadian, N. Yildirim, A.Z. Gu, et al., SPRi-based adenovirus detection using a surrogate antibody method, Biosens. Bioelectron. 74 (2015) 808-814.
|
W. Udos, C.-W. Ooi, S.-H. Tan, et al., Label-free surface-plasmon resonance fiber grating biosensor for Hand-foot-mouth disease (EV-A71) detection, Optik 228 (2021), 166221.
|
L. Huang, L. Ding, J. Zhou, et al., One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device, Biosens. Bioelectron. 171 (2021), 112685.
|
G. Qiu, Z. Gai, Y. Tao, et al., Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection, ACS Nano 14 (2020) 5268-5277.
|
Y. Zheng, S. Bian, J. Sun, et al., Label-free LSPR-vertical microcavity biosensor for on-site SARS-CoV-2 detection, Biosensors 12 (2022), 151.
|
G. Rong, Y. Zheng, X. Li, et al., A high-throughput fully automatic biosensing platform for efficient COVID-19 detection, Biosens. Bioelectron. 220 (2023), 114861.
|
F. Nasrin, A.D. Chowdhury, K. Takemura, et al., Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots, Biosens. Bioelectron. 122 (2018) 16-24.
|
A.D. Chowdhury, F. Nasrin, R. Gangopadhyay, et al., Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors, Biosens. Bioelectron. 170 (2020), 112657.
|
K. Takemura, J. Lee, T. Suzuki, et al., Ultrasensitive detection of norovirus using a magnetofluoroimmunoassay based on synergic properties of gold/magnetic nanoparticle hybrid nanocomposites and quantum dots, Sens. Actuat. B 296 (2019), 126672.
|
Y. Yang, Y. Peng, C. Lin, et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection, Nano-Micro Lett. 13 (2021), 109.
|
M. Zhang, X. Li, J. Pan, et al., Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor, Biosens. Bioelectron. 190 (2021), 113421.
|
O.J. Achadu, F. Abe, T. Suzuki, et al., Molybdenum trioxide nanocubes aligned on a graphene oxide substrate for the detection of norovirus by surface-enhanced Raman scattering, ACS Appl. Mater. Interfaces 12 (2020) 43522-43534.
|
DishaM.K. NayakP. Kumari, et al., Functional nanomaterials based opto-electrochemical sensors for the detection of gonadal steroid hormones, Trac Trends Anal. Chem. 150 (2022), 116571.
|
L. Chen, X. Zhang, G. Zhou, et al., Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay, Anal. Chem. 84 (2012) 3200-3207.
|
L. Guo, J.A. Jackman, H.-H. Yang, et al., Strategies for enhancing the sensitivity of plasmonic nanosensors, Nano Today 10 (2015) 213-239.
|
E. Karakus, E. Erdemir, N. Demirbilek, et al., Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor, Anal. Chim. Acta 1182 (2021), 338939.
|
Y. Gao, Y. Han, C. Wang, et al., Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles, Anal. Chim. Acta 1154 (2021), 338330.
|
T.K. Sharma, R. Ramanathan, P. Weerathunge, et al., Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection, Chem. Commun. 50 (2014) 15856-15859.
|
I.M. Khoris, K. Takemura, J. Lee, et al., Enhanced colorimetric detection of norovirus using in situ growth of Ag shell on Au NPs, Biosens. Bioelectron. 126 (2019) 425-432.
|
J. Sun, Y. Gan, T. Liang, et al., Signal enhancement of electrochemical DNA biosensors for the detection of trace heavy metals, Curr. Opin. Electrochem. 17 (2019) 23-29.
|
P. Miao, Y. Tang, B. Wang, et al., Signal amplification by enzymatic tools for nucleic acids, Trac Trends Anal. Chem. 67 (2015) 1-15.
|
M. Pirzada, Z. Altintas, Nanomaterials for virus sensing and tracking, Chem. Soc. Rev. 51 (2022) 5805-5841.
|
H. Zhao, F. Liu, W. Xie, et al., Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone, Sens. Actuat. B 327 (2021), 128899.
|
E.A. Pumford, J. Lu, I. Spaczai, et al., Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics, Biosens. Bioelectron. 170 (2020), 112674.
|
T. Kang, J. Lu, T. Yu, et al., Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example, Biosens. Bioelectron. 206 (2022), 114109.
|
C.E. Jin, T.Y. Lee, B. Koo, et al., Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing, Sens. Actuat. B 255 (2018) 2399-2406.
|
J.P. Broughton, X. Deng, G. Yu, et al., CRISPR-Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 (2020) 870-874.
|
T. Chaibun, J. Puenpa, T. Ngamdee, et al., Rapid electrochemical detection of coronavirus SARS-CoV-2, Nat. Commun. 12 (2021), 802.
|
W.-J. Liu, X. Zhang, F. Ma, et al., Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay, Trac Trends Anal. Chem. 160 (2023), 116998.
|
K. Zhang, Z. Fan, Y. Huang, et al., Hybridization chain reaction circuit-based electrochemiluminescent biosensor for SARS-cov-2 RdRp gene assay, Talanta 240 (2022), 123207.
|
H. Yang, Y. Zhou, J. Liu, G-quadruplex DNA for construction of biosensors, Trac Trends Anal. Chem. 132 (2020), 116060.
|
M. Du, J. Zheng, S. Tian, et al., DNAzyme walker for homogeneous detection of enterovirus EV71 and CVB3, Anal. Chem. 93 (2021) 5606-5611.
|
H. Xi, M. Juhas, Y. Zhang, G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection, Biosens. Bioelectron. 167 (2020), 112494.
|
S.U. Kim, B.S. Batule, H. Mun, et al., Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer, Analyst 143 (2018) 695-699.
|
W.Y. Cui, H.J. Yoo, Y.G. Li, et al., Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads, Biosens. Bioelectron. 199 (2022), 113878.
|
Z. Fan, B. Yao, Y. Ding, et al., Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds, Biosens. Bioelectron. 178 (2021), 113015.
|
J. Liu, Y. Zhang, H. Xie, et al., Applications of catalytic hairpin assembly reaction in biosensing, Small 15 (2019), 1902989.
|
S.D. Mason, Y. Tang, Y. Li, et al., Emerging bioanalytical applications of DNA walkers, Trac Trends Anal. Chem. 107 (2018) 212-221.
|
H.-M. Kim, H.-J. Kim, J.-H. Park, et al., High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance, Anal. Chim. Acta 1213 (2022), 339960.
|
S. Ruan, Z. Li, H. Qi, et al., Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene, Microchim. Acta 181 (2014) 1293-1300.
|
O.J. Achadu, F. Abe, F. Hossain, et al., Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus, Biosens. Bioelectron. 193 (2021), 113540.
|
K. Mao, K. Zhang, W. Du, et al., The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks, Curr. Opin. Environ. Sci. Heath 17 (2020) 1-7.
|
M. Yasuura, H. Shirato, K. Higo-Moriguchi, et al., Detection of norovirus-like particles with an external force-assisted near-field illumination biosensor, Jpn. J. Appl. Phys. 58 (2019), 071005.
|
S. Chung, L.E. Breshears, S. Perea, et al., Smartphone-based paper microfluidic particulometry of norovirus from environmental water samples at the single copy level, ACS Omega 4 (2019) 11180-11188.
|
S. Liu, K. Zhao, M. Huang, et al., Research progress on detection techniques for point-of-care testing of foodborne pathogens, Front. Bioeng. Biotechnol. 10 (2022), 958134.
|
E. O’Brien, I. Xagoraraki, A water-focused one-health approach for early detection and prevention of viral outbreaks, One Heath 7 (2019), 100094.
|
S. Martinez-Puchol, M. Rusinol, X. Fernandez-Cassi, et al., Characterisation of the sewage virome: Comparison of NGS tools and occurrence of significant pathogens, Sci. Total Environ. 713 (2020), 136604.
|
S. Bofill-Mas, M. Rusinol, Recent trends on methods for the concentration of viruses from water samples, Curr. Opin. Environ. Sci. Heath16 (2020) 7-13.
|
L. Ren, J. Ma, M. Chen, et al., Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater, iScience 25 (2022), 104342.
|
D. Lu, Z. Huang, J. Luo, et al., Primary concentration - The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review, Sci. Total Environ. 747 (2020), 141245.
|
D.B. Ngo, T. Chaibun, L.S. Yin, et al., Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling, Anal. Bioanal. Chem. 413 (2021) 1027-1037.
|
Z. Altintas, M. Gittens, A. Guerreiro, et al., Detection of waterborne viruses using high affinity molecularly imprinted polymers, Anal. Chem. 87 (2015) 6801-6807.
|
A. Rahman, S. Kang, W. Wang, et al., Nanobiotechnology enabled approaches for wastewater based epidemiology, Trac Trends Anal. Chem. 143 (2021), 116400.
|
A. Thakur, A. Kumar, Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors, Sci. Total Environ. 834 (2022), 155219.
|
Q. Wang, J. Wang, Y. Huang, et al., Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal, Biosens. Bioelectron. 197 (2022), 113739.
|
S.M. Leitao, V. Navikas, H. Miljkovic, et al., Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds, Nat. Nanotechnol. (2023).
|
Y. Yang, B. Xu, J. Murray, et al., Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning, Biosens. Bioelectron. 217 (2022), 114721.
|
K.Y. Goud, K.K. Reddy, A. Khorshed, et al., Electrochemical diagnostics of infectious viral diseases: Trends and challenges, Biosens. Bioelectron. 180 (2021), 113112.
|
Y. Zheng, X. Song, Z. Fredj, et al., Challenges and perspectives of multi-virus biosensing techniques: A review, Anal. Chim. Acta 1244 (2023), 340860.
|
Z. Fan, X. Feng, W. Zhang, et al., Rapid detection of high-risk HPV16 and HPV18 based on microchip electrophoresis, J. Pharm. Anal. 10 (2020) 329-333.
|