Citation: | Hui-Nan Zhang, Meng Zhang, Wen Tian, Wei Quan, Fan Song, Shao-Yuan Liu, Xiao-Xiao Liu, Dan Mo, Yang Sun, Yuan-Yuan Gao, Wen Ye, Ying-Da Feng, Chang-Yang Xing, Chen Ye, Lei Zhou, Jing-Ru Meng, Wei Cao, Xiao-Qiang Li. Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1309-1325. doi: 10.1016/j.jpha.2023.08.018 |
S.M. Davidson, P. Ferdinandy, I. Andreadou, et al., Multitarget strategies to reduce myocardial ischemia/reperfusion injury, J. Am. Coll. Cardiol. 73 (2019) 89-99.
|
R. Wang, M. Wang, S. He, et al., Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents, Front. Pharmacol. 11 (2020), 872.
|
J. Cheng, J. Wen, N. Wang, et al., Ion channels and vascular diseases, Arterioscler. Thromb. Vasc. Biol. 39 (2019) e146-e156.
|
M. Dewenter, A. von der Lieth, H.A. Katus, et al., Calcium signaling and transcriptional regulation in cardiomyocytes, Circ. Res. 121 (2017) 1000-1020.
|
E.J. Cartwright, T. Mohamed, D. Oceandy, et al., Calcium signaling dysfunction in heart disease, Biofactors 37 (2011) 175-181.
|
M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: Dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517-529.
|
C. Montell, L. Birnbaumer, V. Flockerzi, The TRP channels, a remarkably functional family, Cell 108 (2002) 595-598.
|
E.W. Bush, D.B. Hood, P.J. Papst, et al., Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling, J. Biol. Chem. 281 (2006) 33487-33496.
|
D. Falcon, I. Galeano-Otero, M. Martin-Bornez, et al., TRPC channels: Dysregulation and Ca2+ mishandling in ischemic heart disease, Cells 9 (2020), 173.
|
W. Tian, S. Liu, M. Zhang, et al., TRPC1 contributes to endotoxemia-induced myocardial dysfunction via mediating myocardial apoptosis and autophagy, Pharmacol. Res. 181 (2022), 106262.
|
N. Tang, W. Tian, G. Ma, et al., TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca2+ leakage, Nat. Commun. 13 (2022), 7455.
|
P. Eder, Cardiac remodeling and disease: SOCE and TRPC signaling in cardiac pathology, Adv. Exp. Med. Biol. 993 (2017) 505-521.
|
M. Mulier, J. Vriens, T. Voets, TRP channel pores and local calcium signals, Cell. Calcium 66 (2017) 19-24.
|
H. Wen, J.K. Gwathmey, L. Xie, Role of transient receptor potential canonical channels in heart physiology and pathophysiology, Front. Cardiovasc. Med. 7 (2020), 24.
|
K. Kuwahara, Y. Wang, J. McAnally, et al., TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling, J. Clin. Invest. 116 (2006) 3114-3126.
|
M. Seth, Z. Zhang, L. Mao, et al., TRPC1 channels are critical for hypertrophic signaling in the heart, Circ. Res. 105 (2009) 1023-1030.
|
A. Dietrich, H. Kalwa, U. Storch, et al., Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1, Pflugers Arch. 455 (2007) 465-477.
|
A. Dietrich, M. Mederos Y Schnitzler, M. Gollasch, et al., Increased vascular smooth muscle contractility in TRPC6-/- mice, Mol. Cell. Biol. 25 (2005) 6980-6989.
|
X. Quan, X. Liu, X. Qin, et al., The role of LR-TIMAP/PP1c complex in the occurrence and development of no-reflow, EBioMedicine 65 (2021), 103251.
|
E. Gao, Y.H. Lei, X. Shang, et al., A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse, Circ. Res. 107 (2010) 1445-1453.
|
D. Chai, H. Shan, G. Wang, et al., Combining DNA vaccine and AIM2 in H1 nanoparticles exert anti-renal carcinoma effects via enhancing tumor-specific multi-functional CD8+ T-cell responses, Mol. Cancer Ther. 18 (2019) 323-334.
|
M. Paillard, E. Tubbs, P.A. Thiebaut, et al., Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury, Circulation 128 (2013) 1555-1565.
|
K. Takov, Z. He, H.E. Johnston, et al., Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential, Basic Res. Cardiol. 115 (2020), 26.
|
Z. Li, L. Mao, B. Yu, et al., GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells, J. Pharm. Anal. 12 (2022) 339-349.
|
S. Salvioli, A. Ardizzoni, C. Franceschi, et al., JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411 (1997) 77-82.
|
A. Heinen, A. Raupach, F. Behmenburg, et al., Echocardiographic analysis of cardiac function after infarction in mice: Validation of single-plane long-axis view measurements and the Bi-plane Simpson method, Ultrasound Med. Biol. 44 (2018) 1544-1555.
|
Z. Wang, F. Zhang, W. Liu, et al., Impaired tricarboxylic acid cycle flux and mitochondrial aerobic respiration during isoproterenol induced myocardial ischemia is rescued by bilobalide, J. Pharm. Anal. 11 (2021) 764-775.
|
L. Slade, J. Chalker, N. Kuksal, et al., Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria, Biochim. Biophys. Acta Gen. Subj. 1861 (2017) 1960-1969.
|
P. Eder, J.D. Molkentin, TRPC channels as effectors of cardiac hypertrophy, Circ. Res. 108 (2011) 265-272.
|
H. Nakayama, B.J. Wilkin, I. Bodi, et al., Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart, FASEB J. 20 (2006) 1660-1670.
|
J.E. Merritt, W.P. Armstrong, C.D. Benham, et al., SK&F 96365, a novel inhibitor of receptor-mediated calcium entry, Biochem. J. 271 (1990) 515-522.
|
M. Vila-Petroff, M.A. Salas, M. Said, et al., CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury, Cardiovasc. Res. 73 (2007) 689-698.
|
K. Elefantova, B. Lakatos, J. Kubickova, et al., Detection of the mitochondrial membrane potential by the cationic dye JC-1 in L1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter, Int. J. Mol. Sci. 19 (2018), 1985.
|
I. Sipos, L. Tretter, V. Adam-Vizi, Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals, J. Neurochem. 84 (2003) 112-118.
|
R.L.S. Goncalves, V.I. Bunik, M.D. Brand, Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex, Free Radic. Biol. Med. 91 (2016) 247-255.
|
R.J. Mailloux, Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species, Redox Biol. 4 (2015) 381-398.
|
S. Cadenas, ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection, Free Radic. Biol. Med. 117 (2018) 76-89.
|
M.J. Morgan, Z. Liu, Crosstalk of reactive oxygen species and NF-κB signaling, Cell Res. 21 (2011) 103-115.
|
L. Tang, F. Yao, H. Wang, et al., Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes, J. Mol. Cell. Cardiol. 126 (2019) 143-154.
|
G. Heusch, Myocardial ischaemia-reperfusion injury and cardioprotection in perspective, Nat. Rev. Cardiol. 17 (2020) 773-789.
|
G. Heusch, B.J. Gersh, The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge, Eur. Heart J. 38 (2017) 774-784.
|
H. Bugger, K. Pfeil, Mitochondrial ROS in myocardial ischemia reperfusion and remodeling, Biochim. Biophys. Acta Mol. Basis Dis. 1866 (2020), 165768.
|
C.L. Quinlan, R.L. Goncalves, M. Hey-Mogensen, et al., The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I, J. Biol. Chem. 289 (2014) 8312-8325.
|
R.J. Mailloux, D. Gardiner, M. O’Brien, 2-Oxoglutarate dehydrogenase is a more significant source of O2·-/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue, Free. Radic. Biol. Med. 97 (2016) 501-512.
|
A.A. Starkov, G. Fiskum, C. Chinopoulos, et al., Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species, J. Neurosci. 24 (2004) 7779-7788.
|
S. Curcic, R. Schober, R. Schindl, et al., TRPC-mediated Ca2+ signaling and control of cellular functions, Semin. Cell Dev. Biol. 94 (2019) 28-39.
|
B.J. Wilkins, Y. Dai, O.F. Bueno, et al., Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy, Circ. Res. 94 (2004) 110-118.
|
M.S. Hayden, S. Ghosh, Shared principles in NF-κB signaling, Cell 132 (2008) 344-362.
|
H. Ishise, B. Larson, Y. Hirata, et al., Hypertrophic scar contracture is mediated by the TRPC3 mechanical force transducer via NFkB activation, Sci. Rep. 5 (2015), 11620.
|
K. Pittas, D.A. Vrachatis, C. Angelidis, et al., The role of calcium handling mechanisms in reperfusion injury, Curr. Pharm. Des. 24 (2019) 4077-4089.
|
T. Weihrauch, J. Baumann, F. Ebner, Early treatment of unstable angina in the coronary care unit: A randomised, double blind, placebo controlled comparison of recurrent ischaemia in patients treated with nifedipine or metoprolol or both, Br. Heart J. 59 (1988) 270-272.
|
I. Sheiban, S. Tonni, A. Chizzoni, et al., Recovery of left ventricular function following early reperfusion in acute myocardial infarction: A potential role for the calcium antagonist nisoldipine, Cardiovasc. Drugs Ther. 11 (1997) 5-16.
|
P. Theroux, J. Gregoire, C. Chin, et al., Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial, J. Am. Coll. Cardiol. 32 (1998) 620-628.
|
F.W. Bar, D. Tzivoni, M.T. Dirksen, et al., Results of the first clinical study of adjunctive CAldaret (MCC-135) in patients undergoing primary percutaneous coronary intervention for ST-Elevation Myocardial Infarction: The randomized multicentre CASTEMI study, Eur. Heart J. 27 (2006) 2516-2523.
|
I.S. Ambudkar, B.C. Bandyopadhyay, X. Liu, et al., Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains, Cell Calcium 40 (2006) 495-504.
|
J.D. Molkentin, Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs, Cardiovasc. Res. 63 (2004) 467-475.
|
B.J. Wilkins, J.D. Molkentin, Calcium-calcineurin signaling in the regulation of cardiac hypertrophy, Biochem. Biophys. Res. Commun. 322 (2004) 1178-1191.
|
J. Heineke, J.D. Molkentin, Regulation of cardiac hypertrophy by intracellular signalling pathways, Nat. Rev. Mol. Cell Biol. 7 (2006) 589-600.
|
J.D. Molkentin, J.R. Lu, C.L. Antos, et al., A calcineurin-dependent transcriptional pathway for cardiac hypertrophy, Cell 93 (1998) 215-228.
|
X. He, S. Li, B. Liu, et al., Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries, Proc. Natl. Acad. Sci. U S A 114 (2017) E4582-E4591.
|
Y. Meng, W. Li, Y. Shi, et al., Danshensu protects against ischemia/reperfusion injury and inhibits the apoptosis of H9c2 cells by reducing the calcium overload through the p-JNK-NF-κB-TRPC6 pathway, Int. J. Mol. Med. 37 (2016) 258-266.
|
J. Davis, A.R. Burr, G.F. Davis, et al., A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo, Dev. Cell 23 (2012) 705-715.
|
D. Shan, R.B. Marchase, J.C. Chatham, Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes, Am. J. Physiol. Cell Physiol. 294 (2008) C833-C841.
|
Q. Tang, W. Guo, L. Zheng, et al., Structure of the receptor-activated human TRPC6 and TRPC3 ion channels, Cell Res. 28 (2018) 746-755.
|
T. Maier, M. Follmann, G. Hessler, et al., Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels, Br. J. Pharmacol. 172 (2015) 3650-3660.
|
A. Dietrich, M. Fahlbusch, T. Gudermann, Classical transient receptor potential 1 (TRPC1): Channel or channel regulator? Cells 3 (2014) 939-962.
|
D.J. Beech, TRPC1: Store-operated channel and more, Pflugers Arch. 451 (2005) 53-60.
|
Y. Tai, S. Yang, Y. Liu, et al., TRPC channels in health and disease, Adv. Exp. Med. Biol. 976 (2017) 35-45.
|
A.R. Pinto, A. Ilinykh, M.J. Ivey, et al., Revisiting cardiac cellular composition, Circ. Res. 118 (2016) 400-409.
|
X. Wen, Y. Peng, M. Gao, et al., Endothelial transient receptor potential canonical channel regulates angiogenesis and promotes recovery after myocardial infarction, J. Am. Heart Assoc. 11 (2022), e023678.
|
Y. Saliba, V. Jebara, J. Hajal, et al., Transient receptor potential canonical 3 and nuclear factor of activated T cells C3 signaling pathway critically regulates myocardial fibrosis, Antioxid. Redox Signal. 30 (2019) 1851-1879.
|
V. Nesin, L. Tsiokas, trpc1, Handb. Exp. Pharmacol. 222 (2014) 15-51.
|
D.K. Heo, W.Y. Chung, H.W. Park, et al., Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells, Cell. Signal. 24 (2012) 899-906.
|
J. Li, X. Zhang, X. Song, et al., The structure of TRPC ion channels, Cell Calcium 80 (2019) 25-28.
|