Volume 13 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Hui-Nan Zhang, Meng Zhang, Wen Tian, Wei Quan, Fan Song, Shao-Yuan Liu, Xiao-Xiao Liu, Dan Mo, Yang Sun, Yuan-Yuan Gao, Wen Ye, Ying-Da Feng, Chang-Yang Xing, Chen Ye, Lei Zhou, Jing-Ru Meng, Wei Cao, Xiao-Qiang Li. Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1309-1325. doi: 10.1016/j.jpha.2023.08.018
Citation: Hui-Nan Zhang, Meng Zhang, Wen Tian, Wei Quan, Fan Song, Shao-Yuan Liu, Xiao-Xiao Liu, Dan Mo, Yang Sun, Yuan-Yuan Gao, Wen Ye, Ying-Da Feng, Chang-Yang Xing, Chen Ye, Lei Zhou, Jing-Ru Meng, Wei Cao, Xiao-Qiang Li. Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1309-1325. doi: 10.1016/j.jpha.2023.08.018

Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species

doi: 10.1016/j.jpha.2023.08.018
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 81970245, 82270357, and 81770432), the Scientific Research Project of Shaanxi Administration of Traditional Chinese Medicine, China (Grant Nos.: 2021-04-ZZ-001, 2021-QYPT-003, and 2022-SLRH-YQ-004), the Project of Science and Technology Department of Shaanxi Province in China (Project No.: 2022YWZX-PG-01), and the Natural Science Basic Research Program of Shaanxi Province in China (Grant No.: 2023-JC-JQ-61).

  • Received Date: Apr. 03, 2023
  • Accepted Date: Aug. 29, 2023
  • Rev Recd Date: Aug. 28, 2023
  • Publish Date: Sep. 01, 2023
  • The canonical transient receptor potential channel (TRPC) proteins form Ca2+-permeable cation channels that are involved in various heart diseases. However, the roles of specific TRPC proteins in myocardial ischemia/reperfusion (I/R) injury remain poorly understood. We observed that TRPC1 and TRPC6 were highly expressed in the area at risk (AAR) in a coronary artery ligation induced I/R model. Trpc1-/- mice exhibited improved cardiac function, lower serum Troponin T and serum creatine kinase level, smaller infarct volume, less fibrotic scars, and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6-/- mice. Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury. Furthermore, Trpc1 deficiency protected adult mouse ventricular myocytes (AMVMs) and HL-1 cells from death during hypoxia/reoxygenation (H/R) injury. RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species (ROS) generation in Trpc1-/- cardiomyocytes. Among these genes, oxoglutarate dehydrogenase-like (Ogdhl) was markedly downregulated. Moreover, Trpc1 deficiency impaired the calcineurin (CaN)/nuclear factor-kappa B (NF-κB) signaling pathway in AMVMs. Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions. Chromatin immunoprecipitation assays confirmed NF-κB binding to the Ogdhl promoter. The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-κB and Ogdhl in cardiomyocytes. In conclusion, our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R, leading to increased Ca2+ influx into associated cardiomyocytes. Subsequently, this upregulates Ogdhl expression through the CaN/NF-κB signaling pathway, ultimately exacerbating ROS production and aggravating myocardial I/R injury.
  • loading
  • S.M. Davidson, P. Ferdinandy, I. Andreadou, et al., Multitarget strategies to reduce myocardial ischemia/reperfusion injury, J. Am. Coll. Cardiol. 73 (2019) 89-99.
    R. Wang, M. Wang, S. He, et al., Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents, Front. Pharmacol. 11 (2020), 872.
    J. Cheng, J. Wen, N. Wang, et al., Ion channels and vascular diseases, Arterioscler. Thromb. Vasc. Biol. 39 (2019) e146-e156.
    M. Dewenter, A. von der Lieth, H.A. Katus, et al., Calcium signaling and transcriptional regulation in cardiomyocytes, Circ. Res. 121 (2017) 1000-1020.
    E.J. Cartwright, T. Mohamed, D. Oceandy, et al., Calcium signaling dysfunction in heart disease, Biofactors 37 (2011) 175-181.
    M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: Dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517-529.
    C. Montell, L. Birnbaumer, V. Flockerzi, The TRP channels, a remarkably functional family, Cell 108 (2002) 595-598.
    E.W. Bush, D.B. Hood, P.J. Papst, et al., Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling, J. Biol. Chem. 281 (2006) 33487-33496.
    D. Falcon, I. Galeano-Otero, M. Martin-Bornez, et al., TRPC channels: Dysregulation and Ca2+ mishandling in ischemic heart disease, Cells 9 (2020), 173.
    W. Tian, S. Liu, M. Zhang, et al., TRPC1 contributes to endotoxemia-induced myocardial dysfunction via mediating myocardial apoptosis and autophagy, Pharmacol. Res. 181 (2022), 106262.
    N. Tang, W. Tian, G. Ma, et al., TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca2+ leakage, Nat. Commun. 13 (2022), 7455.
    P. Eder, Cardiac remodeling and disease: SOCE and TRPC signaling in cardiac pathology, Adv. Exp. Med. Biol. 993 (2017) 505-521.
    M. Mulier, J. Vriens, T. Voets, TRP channel pores and local calcium signals, Cell. Calcium 66 (2017) 19-24.
    H. Wen, J.K. Gwathmey, L. Xie, Role of transient receptor potential canonical channels in heart physiology and pathophysiology, Front. Cardiovasc. Med. 7 (2020), 24.
    K. Kuwahara, Y. Wang, J. McAnally, et al., TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling, J. Clin. Invest. 116 (2006) 3114-3126.
    M. Seth, Z. Zhang, L. Mao, et al., TRPC1 channels are critical for hypertrophic signaling in the heart, Circ. Res. 105 (2009) 1023-1030.
    A. Dietrich, H. Kalwa, U. Storch, et al., Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1, Pflugers Arch. 455 (2007) 465-477.
    A. Dietrich, M. Mederos Y Schnitzler, M. Gollasch, et al., Increased vascular smooth muscle contractility in TRPC6-/- mice, Mol. Cell. Biol. 25 (2005) 6980-6989.
    X. Quan, X. Liu, X. Qin, et al., The role of LR-TIMAP/PP1c complex in the occurrence and development of no-reflow, EBioMedicine 65 (2021), 103251.
    E. Gao, Y.H. Lei, X. Shang, et al., A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse, Circ. Res. 107 (2010) 1445-1453.
    D. Chai, H. Shan, G. Wang, et al., Combining DNA vaccine and AIM2 in H1 nanoparticles exert anti-renal carcinoma effects via enhancing tumor-specific multi-functional CD8+ T-cell responses, Mol. Cancer Ther. 18 (2019) 323-334.
    M. Paillard, E. Tubbs, P.A. Thiebaut, et al., Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury, Circulation 128 (2013) 1555-1565.
    K. Takov, Z. He, H.E. Johnston, et al., Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential, Basic Res. Cardiol. 115 (2020), 26.
    Z. Li, L. Mao, B. Yu, et al., GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells, J. Pharm. Anal. 12 (2022) 339-349.
    S. Salvioli, A. Ardizzoni, C. Franceschi, et al., JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411 (1997) 77-82.
    A. Heinen, A. Raupach, F. Behmenburg, et al., Echocardiographic analysis of cardiac function after infarction in mice: Validation of single-plane long-axis view measurements and the Bi-plane Simpson method, Ultrasound Med. Biol. 44 (2018) 1544-1555.
    Z. Wang, F. Zhang, W. Liu, et al., Impaired tricarboxylic acid cycle flux and mitochondrial aerobic respiration during isoproterenol induced myocardial ischemia is rescued by bilobalide, J. Pharm. Anal. 11 (2021) 764-775.
    L. Slade, J. Chalker, N. Kuksal, et al., Examination of the superoxide/hydrogen peroxide forming and quenching potential of mouse liver mitochondria, Biochim. Biophys. Acta Gen. Subj. 1861 (2017) 1960-1969.
    P. Eder, J.D. Molkentin, TRPC channels as effectors of cardiac hypertrophy, Circ. Res. 108 (2011) 265-272.
    H. Nakayama, B.J. Wilkin, I. Bodi, et al., Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart, FASEB J. 20 (2006) 1660-1670.
    J.E. Merritt, W.P. Armstrong, C.D. Benham, et al., SK&F 96365, a novel inhibitor of receptor-mediated calcium entry, Biochem. J. 271 (1990) 515-522.
    M. Vila-Petroff, M.A. Salas, M. Said, et al., CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury, Cardiovasc. Res. 73 (2007) 689-698.
    K. Elefantova, B. Lakatos, J. Kubickova, et al., Detection of the mitochondrial membrane potential by the cationic dye JC-1 in L1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter, Int. J. Mol. Sci. 19 (2018), 1985.
    I. Sipos, L. Tretter, V. Adam-Vizi, Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals, J. Neurochem. 84 (2003) 112-118.
    R.L.S. Goncalves, V.I. Bunik, M.D. Brand, Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex, Free Radic. Biol. Med. 91 (2016) 247-255.
    R.J. Mailloux, Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species, Redox Biol. 4 (2015) 381-398.
    S. Cadenas, ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection, Free Radic. Biol. Med. 117 (2018) 76-89.
    M.J. Morgan, Z. Liu, Crosstalk of reactive oxygen species and NF-κB signaling, Cell Res. 21 (2011) 103-115.
    L. Tang, F. Yao, H. Wang, et al., Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes, J. Mol. Cell. Cardiol. 126 (2019) 143-154.
    G. Heusch, Myocardial ischaemia-reperfusion injury and cardioprotection in perspective, Nat. Rev. Cardiol. 17 (2020) 773-789.
    G. Heusch, B.J. Gersh, The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge, Eur. Heart J. 38 (2017) 774-784.
    H. Bugger, K. Pfeil, Mitochondrial ROS in myocardial ischemia reperfusion and remodeling, Biochim. Biophys. Acta Mol. Basis Dis. 1866 (2020), 165768.
    C.L. Quinlan, R.L. Goncalves, M. Hey-Mogensen, et al., The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I, J. Biol. Chem. 289 (2014) 8312-8325.
    R.J. Mailloux, D. Gardiner, M. O’Brien, 2-Oxoglutarate dehydrogenase is a more significant source of O2·-/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue, Free. Radic. Biol. Med. 97 (2016) 501-512.
    A.A. Starkov, G. Fiskum, C. Chinopoulos, et al., Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species, J. Neurosci. 24 (2004) 7779-7788.
    S. Curcic, R. Schober, R. Schindl, et al., TRPC-mediated Ca2+ signaling and control of cellular functions, Semin. Cell Dev. Biol. 94 (2019) 28-39.
    B.J. Wilkins, Y. Dai, O.F. Bueno, et al., Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy, Circ. Res. 94 (2004) 110-118.
    M.S. Hayden, S. Ghosh, Shared principles in NF-κB signaling, Cell 132 (2008) 344-362.
    H. Ishise, B. Larson, Y. Hirata, et al., Hypertrophic scar contracture is mediated by the TRPC3 mechanical force transducer via NFkB activation, Sci. Rep. 5 (2015), 11620.
    K. Pittas, D.A. Vrachatis, C. Angelidis, et al., The role of calcium handling mechanisms in reperfusion injury, Curr. Pharm. Des. 24 (2019) 4077-4089.
    T. Weihrauch, J. Baumann, F. Ebner, Early treatment of unstable angina in the coronary care unit: A randomised, double blind, placebo controlled comparison of recurrent ischaemia in patients treated with nifedipine or metoprolol or both, Br. Heart J. 59 (1988) 270-272.
    I. Sheiban, S. Tonni, A. Chizzoni, et al., Recovery of left ventricular function following early reperfusion in acute myocardial infarction: A potential role for the calcium antagonist nisoldipine, Cardiovasc. Drugs Ther. 11 (1997) 5-16.
    P. Theroux, J. Gregoire, C. Chin, et al., Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial, J. Am. Coll. Cardiol. 32 (1998) 620-628.
    F.W. Bar, D. Tzivoni, M.T. Dirksen, et al., Results of the first clinical study of adjunctive CAldaret (MCC-135) in patients undergoing primary percutaneous coronary intervention for ST-Elevation Myocardial Infarction: The randomized multicentre CASTEMI study, Eur. Heart J. 27 (2006) 2516-2523.
    I.S. Ambudkar, B.C. Bandyopadhyay, X. Liu, et al., Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains, Cell Calcium 40 (2006) 495-504.
    J.D. Molkentin, Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs, Cardiovasc. Res. 63 (2004) 467-475.
    B.J. Wilkins, J.D. Molkentin, Calcium-calcineurin signaling in the regulation of cardiac hypertrophy, Biochem. Biophys. Res. Commun. 322 (2004) 1178-1191.
    J. Heineke, J.D. Molkentin, Regulation of cardiac hypertrophy by intracellular signalling pathways, Nat. Rev. Mol. Cell Biol. 7 (2006) 589-600.
    J.D. Molkentin, J.R. Lu, C.L. Antos, et al., A calcineurin-dependent transcriptional pathway for cardiac hypertrophy, Cell 93 (1998) 215-228.
    X. He, S. Li, B. Liu, et al., Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries, Proc. Natl. Acad. Sci. U S A 114 (2017) E4582-E4591.
    Y. Meng, W. Li, Y. Shi, et al., Danshensu protects against ischemia/reperfusion injury and inhibits the apoptosis of H9c2 cells by reducing the calcium overload through the p-JNK-NF-κB-TRPC6 pathway, Int. J. Mol. Med. 37 (2016) 258-266.
    J. Davis, A.R. Burr, G.F. Davis, et al., A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo, Dev. Cell 23 (2012) 705-715.
    D. Shan, R.B. Marchase, J.C. Chatham, Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes, Am. J. Physiol. Cell Physiol. 294 (2008) C833-C841.
    Q. Tang, W. Guo, L. Zheng, et al., Structure of the receptor-activated human TRPC6 and TRPC3 ion channels, Cell Res. 28 (2018) 746-755.
    T. Maier, M. Follmann, G. Hessler, et al., Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels, Br. J. Pharmacol. 172 (2015) 3650-3660.
    A. Dietrich, M. Fahlbusch, T. Gudermann, Classical transient receptor potential 1 (TRPC1): Channel or channel regulator? Cells 3 (2014) 939-962.
    D.J. Beech, TRPC1: Store-operated channel and more, Pflugers Arch. 451 (2005) 53-60.
    Y. Tai, S. Yang, Y. Liu, et al., TRPC channels in health and disease, Adv. Exp. Med. Biol. 976 (2017) 35-45.
    A.R. Pinto, A. Ilinykh, M.J. Ivey, et al., Revisiting cardiac cellular composition, Circ. Res. 118 (2016) 400-409.
    X. Wen, Y. Peng, M. Gao, et al., Endothelial transient receptor potential canonical channel regulates angiogenesis and promotes recovery after myocardial infarction, J. Am. Heart Assoc. 11 (2022), e023678.
    Y. Saliba, V. Jebara, J. Hajal, et al., Transient receptor potential canonical 3 and nuclear factor of activated T cells C3 signaling pathway critically regulates myocardial fibrosis, Antioxid. Redox Signal. 30 (2019) 1851-1879.
    V. Nesin, L. Tsiokas, trpc1, Handb. Exp. Pharmacol. 222 (2014) 15-51.
    D.K. Heo, W.Y. Chung, H.W. Park, et al., Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells, Cell. Signal. 24 (2012) 899-906.
    J. Li, X. Zhang, X. Song, et al., The structure of TRPC ion channels, Cell Calcium 80 (2019) 25-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (163) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return