Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Tingting Yang, Jiayu Yuan, Yuting Peng, Jiale Pang, Zhen Qiu, Shangxiu Chen, Yuhan Huang, Zhenzhou Jiang, Yilin Fan, Junjie Liu, Tao Wang, Xueyan Zhou, Sitong Qian, Jinfang Song, Yi Xu, Qian Lu, Xiaoxing Yin. Metformin: A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 52-68. doi: 10.1016/j.jpha.2023.08.012
Citation: Tingting Yang, Jiayu Yuan, Yuting Peng, Jiale Pang, Zhen Qiu, Shangxiu Chen, Yuhan Huang, Zhenzhou Jiang, Yilin Fan, Junjie Liu, Tao Wang, Xueyan Zhou, Sitong Qian, Jinfang Song, Yi Xu, Qian Lu, Xiaoxing Yin. Metformin: A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 52-68. doi: 10.1016/j.jpha.2023.08.012

Metformin: A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation

doi: 10.1016/j.jpha.2023.08.012
Funds:

The work was supported by the National Natural Science Foundation of China (Grant Nos.: 81973377, 81903689, 82073906 and 82273987), the Key Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Nos.: 19KJB350006 and 19KJA460008), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the initializing Fund of Xuzhou Medical University (Grant No.: D2018011), and Postgraduate Research Practice Innovation Program of Jiangsu Province (Grant Nos.: KYCX21-2733 and KYCX22-2966).

  • Received Date: Mar. 13, 2023
  • Accepted Date: Aug. 16, 2023
  • Rev Recd Date: Aug. 07, 2023
  • Publish Date: Aug. 22, 2023
  • The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
  • loading
  • [1]
    S. Aggarwal, S. Thareja, A. Verma, et al., An overview on 5 alpha-reductase inhibitors, Steroids 75 (2010) 109-153.
    [2]
    M. Sharma, R. Chadha, N. Dhingra, Phytotherapeutic agents for benign prostatic hyperplasia: an overview, Mini Rev. Med. Chem. 17 (2017) 1346-1363.
    [3]
    B. Chughtai, J. C. Forde, D. D. Thomas, et al., Benign prostatic hyperplasia, Nat. Rev. Dis. Primers 2 (2016), 16031.
    [4]
    B. Asiedu, Y. Anang, A. Nyarko, et al., The role of sex steroid hormones in benign prostatic hyperplasia, Aging Male 20 (2017) 17-22.
    [5]
    S.J. McPherson, S.J. Ellem, G.P. Risbridger, Estrogen-regulated development and differentiation of the prostate, Differentiation 76 (2008) 660-670.
    [6]
    G. Rastrelli, L. Vignozzi, G. Corona, et al., Testosterone and benign prostatic hyperplasia, Sex. Med. Rev. 7 (2019) 259-271.
    [7]
    A.J.T. Pedersen, T. B. Stage, D. Glintborg, et al., The pharmacogenetics of metformin in women with polycystic ovary syndrome: a randomized trial, Basic Clin. Pharmacol. Toxicol. 122 (2018) 239-244.
    [8]
    R. E. Patterson, C. R. Marinac, L. Natarajan, et al., Recruitment strategies, design, and participant characteristics in a trial of weight-loss and metformin in breast cancer survivors, Contemp. Clin. Trials 47 (2016) 64-71.
    [9]
    I. Pimentel, B. E. Chen, A. E. Lohmann, et al., The effect of metformin vs placebo on sex hormones in Canadian cancer trials group MA.32, J. Natl. Cancer Inst. 113 (2021) 192-198.
    [10]
    P. Yang, C.Y. Hsu, M.J. Chen, et al., The efficacy of 24-month metformin for improving menses, hormones, and metabolic profiles in polycystic ovary syndrome, J. Clin. Endocrinol. Metab. 103 (2018) 890-899.
    [11]
    T. Cai, Y. Hu, B. Ding, et al., Effect of metformin on testosterone levels in male patients with type 2 diabetes mellitus treated with insulin, Front. Endocrinol. 12 (2021), 813067.
    [12]
    C. Campagnoli, F. Berrino, E. Venturelli, et al., Metformin decreases circulating androgen and estrogen levels in nondiabetic women with breast cancer, Clin. Breast Cancer 13 (2013) 433-438.
    [13]
    V. N. Sivalingam, S. Kitson, R. McVey, et al., Measuring the biological effect of presurgical metformin treatment in endometrial cancer, Br. J. Cancer 114 (2016) 281-289.
    [14]
    W. Kong, Z. Liu, N. Zhang, et al., A prospective cohort study of metformin as an adjuvant therapy for infertile women with endometrial complex hyperplasia/complex atypical hyperplasia and their subsequent assisted reproductive technology outcomes, Front. Endocrinol. 13 (2022), 849794.
    [15]
    Z. Wang, W.Y.F. Ong, T. Shen, et al., Beyond diabetes mellitus: role of metformin in non-muscle-invasive bladder cancer, Singapore Med. J. 63 (2022) 209-213.
    [16]
    K. Klose, E. M. Packeiser, P. Muller, et al., Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line, PLoS One 16 (2021), e0257403.
    [17]
    Z. Wang, X. Xiao, R. Ge, et al., Metformin inhibits the proliferation of benign prostatic epithelial cells, PLoS One 12 (2017), e0173335.
    [18]
    T. Yang, X. Wang, Y. Zhou, et al., SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1-mediated AMPK signaling pathway, Cell Biol. Toxicol. 37 (2021) 595-609.
    [19]
    J.Y. Park, W.Y. Park, J. Park, et al., Therapeutic role of Glycyrrhiza Uralensis fisher on benign prostatic hyperplasia through 5 alpha reductase regulation and apoptosis, Phytomed. Int. J. Phytother. Phytopharm. 105 (2022), 154371.
    [20]
    G. L. Hong, S. R. Park, D. Y. Jung, et al., The therapeutic effects of Stauntonia hexaphylla in benign prostate hyperplasia are mediated by the regulation of androgen receptors and 5α-reductase type 2 J. Ethnopharmacol. 250 (2020), 112446.
    [21]
    H. H. Mosli, A. Esmat, R. T. Atawia, et al., Metformin attenuates testosterone-induced prostatic hyperplasia in rats: a pharmacological perspective, Sci. Rep. 5 (2015), 15639.
    [22]
    G. Lee, J. Shin, H. Choi, et al., Cynanchum wilfordii ameliorates testosterone-induced benign prostatic hyperplasia by regulating 5α-reductase and androgen receptor activities in a rat model, Nutrients 9 (2017), 1070.
    [23]
    Y. Huang, J. Chi, F. Wei, et al., Mitochondrial DNA: a new predictor of diabetic kidney disease, Int. J. Endocrinol. 2020 (2020), 3650937.
    [24]
    Y. Liu, L. Li, B. Ji, et al., Jujuboside A ameliorates tubulointerstitial fibrosis in diabetic mice through down-regulating the YY1/TGF-β1 signaling pathway, Chin. J. Nat. Med. 20 (2022) 656-668.
    [25]
    X. Qian, L. He, M. Hao, et al., YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy, Acta Diabetol. 58 (2021) 47-62.
    [26]
    Y. Liu, Z. Tang, Y. Zhang, et al., Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes, Biochem. Pharmacol. 175 (2020), 113849.
    [27]
    R. Wang, Z. Qiu, G. Wang, et al., Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice, Eur. J. Pharmacol. 882 (2020), 173266.
    [28]
    T. Yang, C. Heng, Y. Zhou, et al., Targeting mammalian serine/threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis, Metab. Clin. Exp. 108 (2020), 154258.
    [29]
    L. Du, C. Li, X. Qian, et al., Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway, Pharmacol. Res. 146 (2019), 104320.
    [30]
    J. Huang, J. Sun, Y. Chen, et al., Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: a case study for breast cancer, Anal. Chim. Acta 711 (2012) 60-68.
    [31]
    T. Ma, X. Tian, B. Zhang, et al., Low-dose metformin targets the lysosomal AMPK pathway through PEN2, Nature 603 (2022) 159-165.
    [32]
    T. Yang, Y. Huang, Y. Zhou, et al., Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry, Andrologia 52 (2020), e13611.
    [33]
    Z. Wang, Y. Zhang, C. Zhao, et al., The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells, Cell. Signal. 84 (2021), 110004.
    [34]
    Y. Huang, J. Du, Z. Hong, et al., Effects of Kangquan Recipe on sex steroids and cell proliferation in rats with benign prostatic hyperplasia, Chin. J. Integr. Med. 15 (2009) 289-292.
    [35]
    S. D. Lokeshwar, B. T. Harper, E. Webb, et al., Epidemiology and treatment modalities for the management of benign prostatic hyperplasia, Transl. Androl. Urol. 8 (2019) 529-539.
    [36]
    A. Miernik, C. Gratzke, Current treatment for benign prostatic hyperplasia, Deutsches Arzteblatt Int. 117 (2020) 843-854.
    [37]
    J. Jin, Y. Ma, X. Tong, et al., Erratum. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK, Hum. Reprod. Oxf. Engl. 35 (2020) 1947-1948.
    [38]
    R. Ma, B. Yi, A. I. Riker, et al., Metformin and cancer immunity, Acta Pharmacol. Sin. 41 (2020) 1403-1409.
    [39]
    N. S. Chandel, D. Avizonis, C. R. Reczek, et al., Are metformin doses used in murine cancer models clinically relevant? Cell Metab. 23 (2016) 569-570.
    [40]
    F. Barbieri, S. Thellung, A. Ratto, et al., In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors, BMC Cancer 15 (2015), 228.
    [41]
    C.H. Tseng, Metformin’s effects on varicocele, erectile dysfunction, infertility and prostate-related diseases: a retrospective cohort study, Front. Pharmacol. 13 (2022), 799290.
    [42]
    R. Tao, L. Miao, X. Yu, et al., Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase, J. Ethnopharmacol. 235 (2019) 65-74.
    [43]
    J.E. Park, W.C. Shin, H.J. Lee, et al., SH-PRO extract alleviates benign prostatic hyperplasia via ROS-mediated activation of PARP/caspase 3 and inhibition of FOXO3a/AR/PSA signaling in vitro and in vivo, Phytother. Res. 37 (2023) 452-463.
    [44]
    V. D. Gandhi, J. Y. Cephus, A. E. Norlander, et al., Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation, J. Clin. Investig. 132 (2022), e153397.
    [45]
    Y. Wang, B. Yao, Y. Wang, et al., Increased FoxM1 expression is a target for metformin in the suppression of EMT in prostate cancer, Int. J. Mol. Med. 33 (2014) 1514-1522.
    [46]
    J.H. Koo, K.L. Guan, Interplay between YAP/TAZ and metabolism, Cell Metab. 28 (2018) 196-206.
    [47]
    B. Cinar, M. M. Al-Mathkour, S. A. Khan, et al., Androgen attenuates the inactivating phospho-Ser-127 modification of yes-associated protein 1 (YAP1) and promotes YAP1 nuclear abundance and activity, J. Biol. Chem. 295 (2020) 8550-8559.
    [48]
    J. S. Mo, Z. Meng, Y. C. Kim, et al., Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway, Nat. Cell Biol. 17 (2015) 500-510.
    [49]
    L. Jiang, J. Zhang, Q. Xu, et al., YAP promotes the proliferation and migration of colorectal cancer cells through the Glut3/AMPK signaling pathway, Oncol. Lett. 21 (2021), 312.
    [50]
    M. Hajimoradi Javarsiani, J. Sajedianfard, S. Haghjooy Javanmard, The effects of metformin on the hippo pathway in the proliferation of melanoma cancer cells: a preclinical study, Arch. Physiol. Biochem. 128 (2022) 1150-1155.
    [51]
    L. Du, C. Li, X. Qian, et al., Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway, Pharmacol. Res. 146 (2019), 104320.
    [52]
    C.A. Eagleson, A.B. Bellows, K. Hu, et al., Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids, J. Clin. Endocrinol. Metab. 88 (2003) 5158-5162.
    [53]
    T. Yang, Y. Zhou, H. Wang, et al., Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway, Exp. Cell Res. 394 (2020), 112145.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (256) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return