Citation: | Qi Wang, Yong Zhang, Baofeng Yang. Development status of novel spectral imaging techniques and application to traditional Chinese medicine[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1269-1280. doi: 10.1016/j.jpha.2023.07.007 |
Q. Yang, Sir George Gabriel stokes: A representative of the Victorian science, J. Dialectics Nat. 38 (2016) 149-155.
|
A.K. Rogers, A.L. Olsen, L.W. Nichols, Measurements of infrared fluorescence of certain optical materials as stimulated by visible light, Appl. Opt. 5 (1966) 1899-1901.
|
D.E. Zacharioudaki, I. Fitilis, M. Kotti, Review of fluorescence spectroscopy in environmental quality applications, Molecules 27 (2022), 4801.
|
J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, et al., Fluorescence lifetime imaging of calcium using Quin-2, Cell Calcium 13 (1992) 131-147.
|
M. Liyanage, A. Coleman, S. du Manoir, et al., Multicolour spectral karyotyping of mouse chromosomes, Nat. Genet. 14 (1996) 312-315.
|
K. Truong, M. Ikura, The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo, Curr. Opin. Struct. Biol. 11 (2001) 573-578.
|
G. Zavattini, S. Vecchi, G. Mitchell, et al., A hyperspectral fluorescence system for 3D in vivo optical imaging, Phys. Med. Biol. 51 (2006) 2029-2043.
|
Q. Fan, C. Chen, Z. Huang, et al., Discrimination of Rhizoma Gastrodiae (Tianma) using 3D synchronous fluorescence spectroscopy coupled with principal component analysis, Spectrochim. Acta A 136 (2015) 1621-1625.
|
G. Schafer, S. Penades, Photolabeling of the adenine nucleotide carrier by 8-azido-ADP, Biochem. Biophys. Res. Commun. 78 (1977) 811-818.
|
J.A. Murillo Pulgarin, A. Alanon Molina, P. Fernandez Lopez, et al., Direct determination of closely overlapping drug mixtures of diflunisal and salicylic acid in serum by means of derivative matrix isopotential synchronous fluorescence spectrometry, Anal. Chim. Acta 583 (2007) 55-62.
|
J.H. Kim, B.C. Lee, J.H. Kim, et al., The isolation and antioxidative effects of vitexin from Acer palmatum, Arch. Pharm. Res. 28 (2005) 195-202.
|
Q. He, L. Liang, Z.-Q. Chen, et al., Research on application of fluorescence spectrum imaging method in Banlangen Granule quality evaluation. Guang Pu Xue Yu Guang Pu Fen Xi 33 (2013) 3044-3049.
|
C. Hu, L. Wang, C. Liu, et al., Identification study of pilose antler based on fluorescence spectral imaging and cluster analysis, J. Optoelectronics Laser 25 (2014) 1225-1228.
|
E. Bazdyrev, P. Rusina, M. Panova, et al., Lung fibrosis after COVID-19: Treatment prospects, Pharmaceuticals 14 (2021), 807.
|
T. Wybranowski, M. Napiorkowska, M. Bosek, et al., Study of albumin oxidation in COVID-19 pneumonia patients: Possible mechanisms and consequences, Int. J. Mol. Sci. 23 (2022), 10103.
|
T. Wybranowski, J. Pyskir, M. Bosek, et al., The mortality risk and pulmonary fibrosis investigated by time-resolved fluorescence spectroscopy from plasma in COVID-19 patients, J. Clin. Med. 11 (2022), 5081.
|
J. Dou, W. Dawuti, X. Zheng, et al., Urine fluorescence spectroscopy combined with machine learning for screening of hepatocellular carcinoma and liver cirrhosis, Photodiagnosis Photodyn. Ther. 40 (2022), 103102.
|
K. Dubayova, K. Krajcikova, M. Marekova, et al., Derivative three-dimensional synchronous fluorescence analysis of tear fluid and their processing for the diagnosis of glaucoma, Sensors 22 (2022), 5534.
|
H. Xi, N. Li, Z. Shi, et al., A three-dimensional “turn-on” sensor array for simultaneous discrimination of multiple heavy metal ions based on bovine serum albumin hybridized fluorescent gold nanoclusters, Anal. Chim. Acta 1220 (2022), 340023.
|
Y. Zhao, Y. Jiang, Q. Wang, et al., Rapid and sensitive detection of dextran sulfate sodium based on supramolecular self-assembly of a perylene diimide derivative in aqueous solution, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 270 (2022), 120760.
|
M. Zhai, H.-L. Wu, H. Fang, et al., Rapid quantitative analysis of curcumin and bisdemethoxy-curcumin in human plasma samples using excitation-emission matrix fluorescence coupled with alternating trilinear decomposition method, Fine Chem. Intermediates. 45 (2015) 63-68.
|
L. Yang, D. Liu, Y. Wei, Determination of Cimifugin in Cimicifugafoetida L.and human plasma using excitation-emission matrix fluorescence coupled with alternating trilinear decomposition method, Comput. Appl. Chem. 32 (2015) 455-458.
|
X. Zhang, L. Liu, S. Jiang, et al., Inhibitory effects of non-oil components of clove on oxidative modification of low density lipoprotein, Sci. Technol. Food Ind. 39 (2018) 75-81, 106.
|
Y. Xue, H. Qiao, B. Li, et al., Spectroscopic analysis of interaction between galangin and human serum albumin, Sci. Technol. Food Ind. 38 (2017) 65-68, 73.
|
X. Wu, C. Li, X. Wang, Research progress on the interaction between small organic molecules and serum albumin, Open J. Nat. Sci. 10 (2022) 1140-1147.
|
B.J. Shen, T.T. Liu, Spectroscopy and molecular docking technique for investigation of interaction between juglone and human serum albumin, Chinese J. Analyt. Chem. 48 (2020) 1383-1391.
|
X.-H. Liang, J. Fan, Y.-Y. Zhao, et al., Interaction between a novel folate receptor targeted rhaponticin conjugate and human serum albumin by molecular spectroscopy, J. Int. Pharm. Res. 44 (2017) 52-59.
|
Y. Wang, Interaction between quercetin and DNA, Sheng Wu Gong Cheng Xue Bao 36 (2020) 2877-2891.
|
G. Ren, H. Sun, J. Guo, et al., Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking, Food Funct. 10 (2019) 3291-3302.
|
H. Zakaria, R. El Kurdi, D. Patra, Interaction of curcumin with poly lactic-co-glycolic acid and poly diallyldimethylammonium chloride by fluorescence spectroscopy, J. Fluoresc. 32 (2022) 2287-2295.
|
S. Li, C. Chen, D.U. Ahn, et al., Interaction research of resveratrol and phosvitin based on fluorescence spectroscopy and molecular docking analysis, J. Food Sci. 87 (2022) 4416-4428.
|
Y.N. Guo, Z.Q. Yang, B.Q. Zhu, Application of three-dimensional fluorescence technique for quality evaluation of traditional Chinese medicine: A review, Mod. Chin. Med. 23 (2021) 2025-2030.
|
J. Chan, Z. Zheng, K. Bell, et al., Photoacoustic imaging with capacitive micromachined ultrasound transducers: Principles and developments, Sensors 19 (2019), 3617.
|
Z. Hosseinaee, M. Le, K. Bell, et al., Towards non-contact photoacoustic imaging [review], Photoacoustics 20 (2020), 100207.
|
C. Moore, J.V. Jokerst, Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging, Theranostics 9 (2019) 1550-1571.
|
J. Xia, J. Yao, L.V. Wang, Photoacoustic tomography: Principles and advances, Electromagn. Waves 147 (2014) 1-22.
|
F.Q. Ames, L. Bracht, F. Sato, et al., Fish oil preparation inhibits leukocyte recruitment and bands that characterize inflamed tissue in a model of phenol-induced skin inflammation: Percutaneous penetration of a topically applied preparation demonstrated by photoacoustic spectroscopy, Nat. Prod. Res. 34 (2020) 2341-2345.
|
V. Mendes, F.F. Veiga, L.V. de Castro-Hoshino, et al., Human nails permeation of an antifungal candidate hydroalcoholic extract from the plant Sapindus saponaria L. rich in saponins, Molecules 26 (2021), 236.
|
K. Katsuoka, K. Inamura, K. Nishioka, et al., Effects of dihydrotestosterone on cultured hair papilla cells and localization of its receptors, Nihon Hifuka Gakkai Zasshi 99 (1989) 529-536.
|
S.C. Pinto, F.G. Bueno, G.P. Panizzon, et al., Stryphnodendron adstringens: Clarifying wound healing in streptozotocin-induced diabetic rats, Planta Med. 81 (2015) 1090-1096.
|
F.G. Bueno, E.A. Moreira, G.R. Morais, et al., Enhanced cutaneous wound healing in vivo by standardized crude extract of Poincianella pluviosa, PLoS One 11 (2016), e0149223.
|
D. Wu, X. Guo, R. Cui, et al., In vivo hemodynamic visualization of berberine-induced effect on the cerebral cortex of a mouse by photoacoustic tomography, Appl. Opt. 58 (2019), 1-8.
|
D. Tang, S. Zhang, X. Shi, et al., Combination of astragali polysaccharide and curcumin improves the morphological structure of tumor vessels and induces tumor vascular normalization to inhibit the growth of hepatocellular carcinoma, Integr. Cancer Ther. 18 (2019), 1534735418824408.
|
W. Li, R. Li, R. Chen, et al., Activatable fluorescent-photoacoustic integrated probes with deep tissue penetration for pathological diagnosis and therapeutic evaluation of acute inflammation in mice, Anal. Chem. 94 (2022) 7996-8004.
|
L. Sun, J. Ouyang, Y. Ma, et al., An activatable probe with aggregation-induced emission for detecting and imaging herbal medicine induced liver injury with optoacoustic imaging and NIR-II fluorescence imaging, Adv. Healthc. Mater. 10 (2021), e2100867.
|
J. Ouyang, L. Sun, Z. Zeng, et al., Nanoaggregate probe for breast cancer metastasis through multispectral optoacoustic tomography and aggregation-induced NIR-I/II fluorescence imaging, Angew. Chem. Int. Ed. Engl. 59 (2020) 10111-10121.
|
H. Guo, Q. Chen, T. Li, et al., Photoacoustic-triggered nanomedicine delivery to internal organs using a dual-wavelength laparoscope, J. Biophotonics 15 (2022), e202200116.
|
C. Du, J. Zhou, J. Liu, Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 173 (2017) 489-494.
|
D. Cardone, A. Merla, New frontiers for applications of thermal infrared imaging devices: Computational psychopshysiology in the neurosciences, Sensors 17 (2017), 1042.
|
F.-F. Mo, S.-R. Ma, L.-P. Wang, et al., Situation and prospects of infrared imaging technology applied in the field of traditional Chinese medicine, Glob. Tradit. Chin. Med. 7 (2014) 977-980.
|
D. Kesztyus, S. Brucher, T. Kesztyus, Use of infrared thermography in medical diagnostics: A scoping review protocol, BMJ Open 12 (2022), e059833.
|
H.M. Wang, D. Zhang, Study on definition of TCM colour inspection science and digitalization of infrared thermal imaging, Mod. Tradit. Chin. Med. Mater. Med. World Sci. Technol. 6 (2004) 26-32, 85-86.
|
H.J. Li, J.Q. Xu, H.J. Guo, et al., Study on the thermal characteristics of 9 kinds of traditional Chinese medicine constitutions, Chin. J. Basic Med. Tradit. Chin. Med. 15 (2009) 790-791.
|
M. Zhu, Y. Li, T. Lin, et al., Application of TTM system for testing Chinese herbal nature, Chin. J. Stereol. Image Anal. 12 (2007) 53-58.
|
D. Alvarez-Prats, O. Carvajal-Fernandez, F. Valera Garrido, et al., Acupuncture points and perforating cutaneous vessels identified using infrared thermography: A cross-sectional pilot study, Evid. Based Complement. Alternat. Med. 2019 (2019), 7126439.
|
R.C. de Souza, M. Pansini, G. Arruda, et al., Laser acupuncture causes thermal changes in small intestine meridian pathway, Lasers Med. Sci. 31 (2016) 1645-1649.
|
Y. Wang, L. Zhang, K. Song, Verification of the theory of “Lieque (LU 7) for the disorders of the head and neck” based on infrared thermography, Zhongguo Zhen Jiu 39 (2019) 169-172.
|
X. Li, Y. Jiang, H. Hu, et al., The moxibustion-induced thermal transport effect between the heart and lung meridians with infrared thermography, Front. Cardiovasc. Med. 9 (2022), 817901.
|
W. Cai, A. Chen, L. Ding, et al., Thermal effects of acupuncture by the infrared thermography test in patients with tinnitus, J. Acupunct. Meridian Stud. 12 (2019) 131-135.
|
X. Liu, Y. Wang, Z. Wu, Infrared thermal imaging-based skin temperature response during cupping at two different negative pressures, Sci. Rep. 12 (2022), 15506.
|
Y. Yin, L.Z. Zhang, Discussion on cold and heat attributes of Euodiae Fructus and Coptidis Rhizoma based on infrared thermal imaging on rats, China J. Tradit. Chin. Med. Pharm. 36 (2021) 5215-5218.
|
Y. Song, M. Fang, B. Qian, et al., Evaluation on the efficacy of Jiang’s Huojing Decoction in treating shoulder and back myofasciitis based on infrared thermography, China Mod. Doctor 60 (2022) 74-78.
|
D.X. Zhang, J. Liu, Y.X. Li, et al., Clinical efficacy of substituting tea drinking for dampness-removing and turbidity-resolving on hyperuricemia based on infrared thermal imaging technology, Clin. J. Chin. Med. 13 (2021) 16-20.
|
W. Xie, W.H. Tan, L.Y. Lin, et al., Clinical observation on traditional Chinese medicine constitution judgment and Chinese medicine intervention for patients with non-alcoholic fatty liver disease based on infrared thermography, Guangming J. Chin. Med. 36 (2021) 742-745.
|
K. Kawakami, Parallel thermal analysis technology using an infrared camera for high-throughput evaluation of active pharmaceutical ingredients: A case study of melting point determination, AAPS PharmSciTech 11 (2010) 1202-1205.
|
W.D. Lin, J.Y. Mi, X.Y. Pan, et al., Application of dynamic infrared thermography combined with color duplex sonography in the localization of perforator before free anterolateral femoral flap transplantation, Chin. J. Hand Surg. 38 (2022) 192-195.
|
R. Sonda, L. Pandis, F. Bassetto, et al., Deep inferior epigastric perforator flap preoperative planning: A comparative analysis between dynamic infrared thermography, computerized tomography angiography, and hand-held Doppler, Microsurgery 42 (2022) 649-658.
|
R.A.B. Lopes-Martins, D.P. Barbaroto, E. Da Silva Barbosa, et al., Infrared thermography as valuable tool for gynoid lipodystrophy (cellulite) diagnosis, Lasers Med. Sci. 37 (2022) 2639-2644.
|
W. Chang, J. Wang, J. Zhang, et al., High performance gold Nanorods@DNA self-assembled drug-loading system for cancer thermo-chemotherapy in the second near-infrared optical window, Pharmaceutics 14 (2022), 1110.
|
M. Wang, Y. Xiong, N. Ling, et al., Detection of the dynamic response of cucumber leaves to fusaric acid using thermal imaging, Plant Physiol. Biochem. 66 (2013) 68-76.
|
F.J. Fortes, J. Moros, P. Lucena, et al., Laser-induced breakdown spectroscopy, Anal. Chem. 85 (2013) 640-669.
|
S.K. Hussain Shah, J. Iqbal, P. Ahmad, et al., Laser induced breakdown spectroscopy methods and applications: A comprehensive review, Radiat. Phys. Chem. 170 (2020), 108666.
|
A. Kumar, F.Y. Yueh, J.P. Singh, et al., Characterization of malignant tissue cells by laser-induced breakdown spectroscopy, Appl. Opt. 43 (2004) 5399-5403.
|
J. Yao, Q. Yang, X. He, et al., Spectral filtering method for improvement of detection accuracy of Mg, Cu, Mn and Cr elements in aluminum alloys using femtosecond LIBS, RSC Adv. 12 (2022) 32230-32236.
|
J. Wu, Y. Liu, Y. Cui, et al., A laser-induced breakdown spectroscopy-integrated lateral flow strip (LIBS-LFS) sensor for rapid detection of pathogen, Biosens. Bioelectron. 142 (2019), 111508.
|
M. Dell’Aglio, R. Gaudiuso, G.S. Senesi, et al., Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS), J. Environ. Monit. 13 (2011) 1422-1426.
|
Y.V. Kistenev, A. Das, N. Mazumder, et al., Label-free laser spectroscopy for respiratory virus detection: A review, J. Biophotonics 15 (2022), e202200100.
|
E.J. Blanchette, S.C. Sleiman, H. Arain, et al., Detection and classification of bacterial cells after centrifugation and filtration of liquid specimens using laser-induced breakdown spectroscopy, Appl. Spectrosc. 76 (2022) 894-904.
|
F. Liu, W. Wang, T. Shen, et al., Rapid identification of kudzu powder of different origins using laser-induced breakdown spectroscopy, Sensors 19 (2019), 1453.
|
Z. Zhao, Q. Wang, X. Xu, et al., Accurate identification and quantification of Chinese yam powder adulteration using laser-induced breakdown spectroscopy, Foods 11 (2022), 1216.
|
T. Shen, W. Li, X. Zhang, et al., High-sensitivity determination of nutrient elements in Panax notoginseng by laser-induced breakdown spectroscopy and chemometric methods, Molecules 24 (2019), 1525.
|
Y. Yu, Z. Hao, C. Li, et al., Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm, Acta Phys. Sin. 62 (2013), 215201.
|
X. Li, W. Kong, X. Liu, et al., Application of laser-induced breakdown spectroscopy coupled with spectral matrix and convolutional neural network for identifying geographical origins of Gentiana rigescens franch, Front. Artif. Intell. 4 (2021), 735533.
|
X. Liu, Q. Ma, S. Liu, et al., Monitoring As and Hg variation in An-Gong-Niu-Huang Wan (AGNH) intermediates in a pilot scale blending process using laser-induced breakdown spectroscopy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 151 (2015) 547-552.
|
X.-N. Liu, X.-Y. Shi, S.-Y. Jia, et al., Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique, Zhongguo Zhong Yao Za Zhi 40 (2015) 2239-2243.
|
M. Manley, Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials, Chem. Soc. Rev. 43 (2014) 8200-8214.
|
M.A. Chan, B.B. Bowen, F.A. Corsetti, et al., Exploring, mapping, and data management integration of habitable environments in astrobiology, Front. Microbiol. 10 (2019), 147.
|
J.A. Timlin, A. Carden, M.D. Morris, et al., Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging, J. Biomed. Opt. 4 (1999) 28-34.
|
G. Payne, N. Langlois, C. Lennard, et al., Applying visible hyperspectral (chemical) imaging to estimate the age of bruises, Med. Sci. Law 47 (2007) 225-232.
|
K.J. Zuzak, S.C. Naik, G. Alexandrakis, et al., Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery, Anal. Chem. 79 (2007) 4709-4715.
|
A. Nouvong, B. Hoogwerf, E. Mohler, et al., Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin, Diabetes Care 32 (2009) 2056-2061.
|
S.J. Hamilton, A.E. Lowell, R.A. Lodder, Hyperspectral techniques in analysis of oral dosage forms, J. Biomed. Opt. 7 (2002) 561-570.
|
M. Sandasi, I. Vermaak, W. Chen, et al., Hyperspectral imaging and chemometric modeling of Echinacea - a novel approach in the quality control of herbal medicines, Molecules 19 (2014) 13104-13121.
|
E.T. Garbacik, R.P. Korai, E.H. Frater, et al., In planta imaging of Δ9-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy, J. Biomed. Opt. 18 (2013), 046009.
|
M.E. Klein, B.J. Aalderink, R. Padoan, et al., Quantitative hyperspectral reflectance imaging, Sensors (Basel) 8 (2008) 5576-5618.
|
W.F. Vermaas, J.A. Timlin, H.D. Jones, et al., In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells, Proc. Natl. Acad. Sci. U S A 105 (2008) 4050-4055.
|
P.F. Favreau, C. Hernandez, T. Heaster, et al., Excitation-scanning hyperspectral imaging microscope, J. Biomed. Opt. 19 (2014), 046010.
|
N. Mehta, S.P. Sahu, S. Shaik, et al., Dark-field hyperspectral imaging for label free detection of nano-bio-materials, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13 (2021), e1661.
|
Y. Tao, L. Chen, E. Jiang, et al., Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0, Zhongguo Zhong Yao Za Zhi 45 (2020) 5438-5442.
|
Q. Xiao, X. Bai, P. Gao, et al., Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging, Sensors 20 (2020), 4940.
|
C. Ru, Z. Li, R. Tang, A hyperspectral imaging approach for classifying geographical origins of rhizoma atractylodis macrocephalae using the fusion of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI), Sensors 19 (2019), 2045.
|
W. Yin, C. Ru, J. Zheng, et al., Fusion of spectrum and image features to identify Glycyrrhizae Radix et Rhizoma from different origins based on hyperspectral imaging technology, Zhongguo Zhong Yao Za Zhi 46 (2021) 923-930.
|
Y. Wei, W. Hu, F. Wu, et al., Polysaccharide determination and habitat classification for fresh Dendrobiums with hyperspectral imagery and modified RBFNN, RSC Adv. 12 (2022) 1141-1148.
|
H. Zhang, T. Wu, L. Zhang, et al., Development of a portable field imaging spectrometer: Application for the identification of Sun-dried and sulfur-fumigated Chinese herbals, Appl. Spectrosc. 70 (2016) 879-887.
|
Z. Wu, L. Zhou, S. Dai, et al., Evaluation of the value of near infrared (NIR) spectromicroscopy for the analysis of glycyrrizhic acid in licorice, Chin. J. Nat. Med. 13 (2015) 316-320.
|
S. Tankeu, I. Vermaak, W. Chen, et al., Differentiation between two “fang ji” herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging, Phytochemistry 122 (2016) 213-222.
|
V. Batshev, A. Machikhin, G. Martynov, et al., Polarizer-free AOTF-based SWIR hyperspectral imaging for biomedical applications, Sensors 20 (2020), 4439.
|
A.R. Rao, V. Hanchanale, P. Javle, et al., Spectroscopic view of life and work of the Nobel Laureate Sir C.V. Raman, J. Endourol. 21 (2007) 8-11.
|
L. Sirleto, Fiber Raman amplifiers and fiber Raman lasers, Micromachines 11 (2020), 1044.
|
Y. Tao, L. Chen, M.L. Pan, Integrated Raman spectroscopy and deep learning algorithm for quality control of manufacturing process of traditional Chinese medicine in context of intelligent manufacturing. Mod. Chin. Med. 24 (2022) 176-180.
|
D. Chen, X. Xie, H. Ao, et al., Raman spectroscopy in quality control of Chinese herbal medicine, J. Chin. Med. Assoc. 80 (2017) 288-296.
|
W.J. Yin, J.F. Tang, J. Zheng, et al., Real-time monitoring of extraction process of Glycyrrhizae Radix et Rhizoma formula granule based on Raman spectroscopy technology, Chin. Trad. Herb. Drugs 52 (2021) 5560-5568.
|
Y. Liu, X.J. Wang, L. Liu, Application of Raman spectra in the identification of Panax Notoginseng, Strait Pharm. J. 32 (2020) 60-62.
|
Y. Feng, L. Gao, X. Han, et al., Identification of pilose antler by Raman spectroscopy and ICP-AES, Chin. Trad. Pat. Med. 42 (2020) 523-527.
|
P.L. Stiles, J.A. Dieringer, N.C. Shah, et al., Surface-enhanced Raman spectroscopy, Annual Rev. Anal. Chem. 1 (2008) 601-626.
|
A.I. Perez, D. Lyu, Z. Lu, et al., Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments, Chem. Sci. 11 (2020) 4563-4577.
|
H. Lee, L. Xu, D. Koh, et al., Various on-chip sensors with microfluidics for biological applications, Sensors 14 (2014) 17008-17036.
|
W.-W. Chen, S.-Y. Feng, W.-S. Lin, et al., Surface-enhanced Raman spectroscopic analysis of largehead atractylodes rhizome decoction, Guang Pu Xue Yu Guang Pu Fen Xi 29 (2009) 2450-2452.
|
J. Zhao, Y. Liu, A.M. Fales, et al., Direct analysis of traditional Chinese medicines using surface-enhanced Raman scattering (SERS), Drug Test. Anal. 6 (2014) 1063-1068.
|
B. Fan, Y. Wang, Z. Li, et al., Si@Ag@PEI substrate-based SERS sensor for rapid detection of illegally adulterated sulfur dioxide in traditional Chinese medicine, Talanta 238 (2022), 122988.
|
T. Wang, J. Wei, Y. Wang, et al., Recent advances in surface-enhanced Raman scattering technique for pollutant detection in Chinese medicinal material, Zhongguo Zhong Yao Za Zhi 46 (2021) 62-71.
|
F. Ren, Z.-G. Yu, F. Lu, Detection of aflatoxin G1 in coix seed by dynamic surface-enhanced Raman spectroscopy, J. Instr. Anal. 40 (2021) 612-616.
|
L. Liu, Z. Bian, Z. Dong, et al., Detection of residual organic pesticides in yam by surface enhanced Raman spectroscopy, Laser Optoelectron. Prog. 59 (2022), 0417001.
|
J.H. Sun, Y. Feng, S. Wang, et al., Identification of Cordyceps sinensis and Cordyceps militaris by surface enhanced Raman spectroscopy with chemometric analysis, Chin. J. Pharm. Anal. 42 (2022) 727-733.
|
D. Boildieu, T. Guerenne-Del Ben, L. Duponchel, et al., Coherent anti-Stokes Raman scattering cell imaging and segmentation with unsupervised data analysis, Front. Cell Dev. Biol. 10 (2022), 933897.
|
L.F. Lima, W.R. Araujo, Laser-scribed graphene on polyetherimide substrate: An electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples, Mikrochim. Acta 189 (2022), 465.
|
M.D. Sonntag, E.A. Pozzi, N. Jiang, et al., Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5 (2014) 3125-3130.
|
W.H. Lian, The 20th National Conference on Light Scattering, November 2-6, 2019, Suzhou, China.
|
S.S. Lin, V. Alexei, Y. Tang, Application of two-photon microscopy in the field of traditional Chinese medicine, World Chin. Med. 15 (2020) 1520-1526.
|
Y. Huang, B. Guo, B. Shi, et al., Chinese herbal medicine Xueshuantong enhances cerebral blood flow and improves neural functions in Alzheimer’s disease mice, J. Alzheimers. Dis. 63 (2018) 1089-1107.
|
S. Liu, C. Wei, N. Kang, et al., Chinese medicine Tongxinluo capsule alleviates cerebral microcirculatory disturbances in ischemic stroke by modulating vascular endothelial function and inhibiting leukocyte-endothelial cell interactions in mice: A two-photon laser scanning microscopy study, Microcirculation 25 (2018), e12437.
|
Y. Huang, M.J. Patil, M. Yu, et al., Effects of ginger constituent 6-shogaol on gastroesophageal vagal afferent C-fibers, Neurogastroenterol. Motil. 31 (2019), e13585.
|
T. Gu, L. Lin, Y. Jiang, et al., Acupuncture therapy in treating migraine: Results of a magnetic resonance spectroscopy imaging study, J. Pain Res. 11 (2018) 889-900.
|
H. Zhang, Y. Peng, Z. Liu, et al., Effects of acupuncture therapy on abdominal fat and hepatic fat content in obese children: A magnetic resonance imaging and proton magnetic resonance spectroscopy study, J. Altern. Complement. Med. 17 (2011) 413-420.
|
T. Gu, X. Ma, Y. Xu, et al., Metabolite concentration ratios in thalami of patients with migraine and trigeminal neuralgia measured with 1H-MRS, Neurol. Res. 30 (2008) 229-233.
|
A.M. Handler, M. Fallah, A. Just Pedersen, et al., MALDI mass spectrometry imaging as a complementary analytical method for improved skin distribution analysis of drug molecule and excipients, Int. J. Pharm. 590 (2020), 119949.
|
K. Scupakova, B. Balluff, C. Tressler, et al., Cellular resolution in clinical MALDI mass spectrometry imaging: The latest advancements and current challenges, Clin. Chem. Lab. Med. 58 (2020) 914-929.
|
Y. Wang, Q. Tong, S. Ma, et al., Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota, Signal Transduct. Target. Ther. 6 (2021), 77.
|
M. Genangeli, A.M.M. Heijens, A. Rustichelli, et al., MALDI-mass spectrometry imaging to investigate lipid and bile acid modifications caused by lentil extract used as a potential hypocholesterolemic treatment, J. Am. Soc. Mass Spectrom. 30 (2019) 2041-2050.
|