Citation: | Shengsuo Ma, Bing Yang, Yang Du, Yiwen Lv, Jiarong Liu, Yucong Shi, Ting Huang, Huachong Xu, Li Deng, Xiaoyin Chen. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 984-998. doi: 10.1016/j.jpha.2023.07.001 |
I. Ordas, L. Eckmann, M. Talamini, et al., Ulcerative colitis, Lancet 380 (2012) 1606-1619.
|
J.D. Feuerstein, A.C. Moss, F.A. Farraye, Ulcerative colitis, Mayo Clin. Proc. 94 (2019) 1357-1373.
|
R.J. Xavier, D.K. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease, Nature 448 (2007) 427-434.
|
M. Saleh, G. Trinchieri, Innate immune mechanisms of colitis and colitis-associated colorectal cancer, Nat. Rev. Immunol. 11 (2011) 9-20.
|
B. Rodenak-Kladniew, A. Castro, P. Starkel, et al., 1,8-cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs, Life Sci. 243 (2020), 117271.
|
Y. Wang, D. Zhen, D. Fu, et al., 1,8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway, Phytomedicine 91 (2021), 153672.
|
C. Yin, B. Liu, P. Wang, et al., Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis, Br. J. Pharmacol. 177 (2020) 2042-2057.
|
N. Yadav, H. Chandra, Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB, PLoS One 12 (2017), e0188232.
|
B. Lomenick, R. Hao, N. Jonai, et al., Target identification using drug affinity responsive target stability (DARTS), Proc. Natl. Acad. Sci. U S A 106 (2009) 21984-21989.
|
M.Y. Pai, B. Lomenick, H. Hwang, et al., Drug affinity responsive target stability (DARTS) for small-molecule target identification, Methods Mol. Biol. 1263 (2015) 287-298.
|
G. Xu, S. Fu, X. Zhan, et al., Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90, JCI Insight 6 (2021), e134601.
|
M.D.C. Ponce de Leon-Rodriguez, J.P. Guyot, C. Laurent-Babot, Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation, Crit. Rev. Food Sci. Nutr. 59 (2019) 3648-3666.
|
K. Horst, M. Rychlik, Quantification of 1,8-cineole and of its metabolites in humans using stable isotope dilution assays, Mol. Nutr. Food Res. 54 (2010) 1515-1529.
|
A. Mayor, F. Martinon, T. De Smedt, et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses, Nat. Immunol. 8 (2007) 497-503.
|
R.P. Hirten, B.E. Sands, New therapeutics for ulcerative colitis, Annu. Rev. Med. 72 (2021) 199-213.
|
S.Y. Salim, J.D. Soderholm, Importance of disrupted intestinal barrier in inflammatory bowel diseases, Inflamm. Bowel Dis. 17 (2011) 362-381.
|
W.-T. Kuo, L. Shen, L. Zuo, et al., Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression, Gastroenterology 157 (2019) 1323-1337.
|
P. Marincola Smith, Y.A. Choksi, N.O. Markham, et al., Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice, Am. J. Physiol. Gastrointest. Liver Physiol. 320 (2021) G936-G957.
|
S. Thanaraj, P.J. Hamlin, A.C. Ford, Systematic review: Granulocyte/monocyte adsorptive apheresis for ulcerative colitis, Aliment. Pharmacol. Ther. 32 (2010) 1297-1306.
|
D.M. Hardbower, L.A. Coburn, M. Asim, et al., EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis, Oncogene 36 (2017) 3807-3819.
|
L. Liu, Y. Wu, B. Wang, et al., DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization, Cell Death Dis. 12 (2021), 500.
|
J.A. Hamilton, GM-CSF in inflammation, J. Exp. Med. 217 (2020), e20190945.
|
C.B. Crayne, S. Albeituni, K.E. Nichols, et al., The immunology of macrophage activation syndrome, Front. Immunol. 10 (2019), 119.
|
U. Widmer, K.R. Manogue, A. Cerami, et al., Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines, J. Immunol. 150 (1993) 4996-5012.
|
L.W. Kaminsky, R. Al-Sadi, T.Y. Ma, IL-1β and the intestinal epithelial tight junction barrier, Front. Immunol. 12 (2021), 767456.
|
M. Rawat, M. Nighot, R. Al-Sadi, et al., IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA, Gastroenterology 159 (2020) 1375-1389.
|
F. Wang, B.T. Schwarz, W.V. Graham, et al., IFN-γ-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction, Gastroenterology. 131 (2006) 1153-1163.
|
K. Nakamura, M. Zhang, S. Kageyama, et al., Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury, J. Hepatol. 67 (2017) 1232-1242.
|
M. Zhang, L. Zhou, Y. Xu, et al., A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis, Nature 586 (2020) 434-439.
|
E. Zhang, Q. Chen, J. Wang, et al., Protective role of microRNA-27a upregulation and HSP90 silencing against cerebral ischemia-reperfusion injury in rats by activating PI3K/AKT/mTOR signaling pathway, Int. Immunopharmacol. 86 (2020), 106635.
|
C. Zhang, H. Chen, Q. He, et al., Fibrinogen/AKT/microfilament axis promotes colitis by enhancing vascular permeability, Cell Mol. Gastroenterol. Hepatol. 11 (2021) 683-696.
|
B. Liu, X. Piao, W. Niu, et al., Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota, Front. Pharmacol. 11 (2020), 1036.
|
Y. Shi, W. Su, L. Zhang, et al., TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation, Front. Immunol. 11 (2021), 609060.
|