Citation: | Hansong Bai, Jiahua Lyu, Xinyu Nie, Hao Kuang, Long Liang, Hongyuan Jia, Shijie Zhou, Churong Li, Tao Li. Ginsenoside Rg5 enhances the radiosensitivity of lung adenocarcinoma via reducing HSP90-CDC37 interaction and promoting client protein degradation[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1296-1308. doi: 10.1016/j.jpha.2023.06.004 |
A.G. Nicholson, M.S. Tsao, M.B. Beasley, et al., The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015, J. Thorac. Oncol. 17 (2022) 362-387.
|
S.K. Vinod, E. Hau, Radiotherapy treatment for lung cancer: Current status and future directions, Respirology 25 Suppl 2 (2020) 61-71.
|
G.P. Delaney, M.B. Barton, Evidence-based estimates of the demand for radiotherapy, Clin. Oncol. 27 (2015) 70-76.
|
J. Shafiq, T.P. Hanna, S.K. Vinod, et al., A Population-based Model of Local Control and Survival Benefit of Radiotherapy for Lung Cancer, Clin. Oncol. 28 (2016) 627-638.
|
M. Krause, A. Dubrovska, A. Linge, et al., Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments, Adv. Drug Deliv. Rev. 109 (2017) 63-73.
|
S. Rey, L. Schito, M. Koritzinsky, et al., Molecular targeting of hypoxia in radiotherapy, Adv. Drug Deliv. Rev. 109 (2017) 45-62.
|
H. Wang, X. Mu, H. He, et al., Cancer Radiosensitizers, Trends Pharmacol. Sci. 39 (2018) 24-48.
|
Y. Chen, Q. Liu, P. An, et al., Ginsenoside Rd: A promising natural neuroprotective agent, Phytomedicine Int. J. Phytother. Phytopharm. 95 (2022), 153883.
|
Y. Yang, Z. Ju, Y. Yang, et al., Phytochemical analysis of Panax species: A review, J. Ginseng Res. 45 (2021) 1-21.
|
S. Yoo, B.I. Park, D.H. Kim, et al., Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults, Pharmaceutics 13 (2021), 487.
|
H. Kim, P. Choi, T. Kim, et al., Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer, J. Ginseng Res. 45 (2021) 134-148.
|
X. Yang, G. Wang, J. You, et al., High expression of cancer-IgG is associated with poor prognosis and radioresistance via PI3K/AKT/DNA-PKcs pathway regulation in lung adenocarcinoma, Front. Oncol. 11 (2021), 675397.
|
A. Tsolou, M. Liousia, D. Kalamida, et al., Inhibition of IKK-NFkappaB pathway sensitizes lung cancer cell lines to radiation, Cancer Biol. Med. 14 (2017) 293-301.
|
K. Park, A.E. Cho, Using reverse docking to identify potential targets for ginsenosides, Journal of Ginseng Research 41 (2017) 534-539.
|
A.E. Kabakov, V.A. Kudryavtsev, V.L. Gabai, Hsp90 inhibitors as promising agents for radiotherapy, J. Mol. Med. 88 (2010) 241-247.
|
E. Amatya, B.S.J. Blagg, Recent advances toward the development of Hsp90 C-terminal inhibitors, Bioorg. Med. Chem. Lett. 80 (2023), 129111.
|
Q. Wang, Y. Chen, H. Chang, et al., The role and mechanism of ATM-mediated autophagy in the transition from hyper-radiosensitivity to induced radioresistance in lung cancer under low-dose radiation, Front. Cell Dev. Biol. 9 (2021), 650819.
|
J. Elegheert, E. Behiels, B. Bishop, et al., Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins, Nat. Protoc. 13 (2018) 2991-3017.
|
N.A.P. Franken, H.M. Rodermond, J. Stap, et al., Clonogenic assay of cells in vitro, Nat. Protoc. 1 (2006) 2315-2319.
|
L. Bodgi, N. Foray, The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model, Int. J. Radiat. Biol. 92 (2016) 117-131.
|
I. Lakshmanan, S.K. Batra, Protocol for apoptosis assay by flow cytometry using annexin V staining method, Bio. Protoc. 3 (2013), e374.
|
Q. Song, J. Wen, W. Li, et al., HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6 mediated CD147 polyubiquitination, Cancer. Sci. 113 (2022) 1463-1474.
|
A. Daina, O. Michielin, V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357-W364.
|
Z. Yao, J. Dong, Y. Che, et al., TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models, J. Comput. Aided Mol. Des. 30 (2016) 413-424.
|
L. Wright, X. Barril, B. Dymock, et al., Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms, Chem. Biol. 11 (2004) 775-785.
|
Y. Liu, M. Grimm, W. Dai, et al., CB-Dock: A web server for cavity detection-guided protein-ligand blind docking, Acta Pharmacol. Sin. 41 (2020) 138-144.
|
C. Zhou, C. Zhang, H. Zhu, et al., Allosteric regulation of Hsp90α’s activity by small molecules targeting the middle domain of the chaperone, iScience 23 (2020), 100857.
|
D. Raghu, P. Hamill, A. Banaji, et al., Assessment of the binding interactions of SARS-CoV-2 spike glycoprotein variants, J. Pharm. Anal. 12 (2022) 58-64.
|
L. Wang, L. Zhang, L. Li, et al., Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer, Sci. Adv. 5 (2019), eaax2277.
|
T. Li, H. Jiang, Y. Tong, et al., Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery, J. Hematol. Oncol. 11 (2018), 59.
|
R.C. Russell, Y. Tian, H. Yuan, et al., ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nat. Cell Biol. 15 (2013) 741-750.
|
W. Wu, X. Wang, N. Berleth, et al., The autophagy-initiating kinase ULK1 controls RIPK1-mediated cell death, Cell Rep. 31 (2020), 107547.
|
X. Chen, P. Wang, F. Guo, et al., Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition, Int. J. Radiat. Biol. 93 (2017) 764-770.
|
H. Chaachouay, P. Ohneseit, M. Toulany, et al., Autophagy contributes to resistance of tumor cells to ionizing radiation, Radiother. Oncol. 99 (2011) 287-292.
|
S. Nisar, T. Masoodi, K.S. Prabhu, et al., Natural products as chemo-radiation therapy sensitizers in cancers, Biomed. Pharmacother. 154 (2022), 113610.
|
Q. Zhang, F. Wang, K. Jia, et al., Natural product interventions for chemotherapy and radiotherapy-induced side effects, Front. Pharmacol. 9 (2018), 1253.
|
L. Yang, X. Zhang, K. Li, et al., Protopanaxadiol inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by targeting STAT3 pathway, Cell Death Dis. 10 (2019) 630.
|
Y. Liu, D. Fan, The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K, Nutrients 12 (2020), 246.
|
Z. Niu, W. Zhang, J. Shi, et al., Effect of silencing C-erbB-2 on esophageal carcinoma cell biological behaviors by inhibiting IGF-1 pathway activation, J. Cardiothorac. Surg. 16 (2021), 194.
|
M.A. Serwetnyk, B.S.J. Blagg, The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition, Acta Pharm. Sin. B. 11 (2021) 1446-1468.
|
T.T. Koll, S.S. Feis, M.H. Wright, et al., HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair, Mol. Cancer Ther. 7 (2008) 1985-1992.
|
Y. Wang, H. Liu, L. Diao, et al., Hsp90 inhibitor ganetespib sensitizes non-small cell lung cancer to radiation but has variable effects with chemoradiation, Clin. Cancer Res. 22 (2016) 5876-5886.
|
M. Provencio, A. Sanchez, P. Garrido, et al., New molecular targeted therapies integrated with radiation therapy in lung cancer, Clin. Lung Cancer 11 (2010) 91-97.
|
L. Li, L. Wang, Q. You, et al., Heat Shock Protein 90 Inhibitors: An update on achievements, challenges, and future directions, J. Med. Chem. 63 (2020) 1798-1822.
|
Y. Xiao, Y. Liu, Recent advances in the discovery of novel HSP90 inhibitors: An update from 2014, Curr. Drug Targets 21 (2020) 302-317.
|
A. Wu, B. Wu, J. Guo, et al., Elevated expression of CDK4 in lung cancer, J. Transl. Med. 9 (2011), 38.
|
S. Goel, J.S. Bergholz, J. Zhao, Targeting CDK4 and CDK6 in cancer, Nat. Rev. Cancer 22 (2022) 356-372.
|
S. Biade, C.C. Stobbe, J.D. Chapman, The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles, Radiat. Res. 147 (1997) 416-421.
|
S.Y. Tam, V.W. Wu, H.K. Law, Influence of autophagy on the efficacy of radiotherapy, Radiat. Oncol. 12 (2017), 57.
|
J. Gao, F. Lu, J. Yan, et al., The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma, Front. Immunol. 13 (2022), 992626.
|
M. Dai, C. Zhang, A. Ali, et al., CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer, Sci. Rep. 6 (2016), 35383.
|
M.A. Ortiz, T. Mikhailova, X. Li, et al., Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition, Cell Commun. Signal. 19 (2021), 67.
|
S. Gao, H. Kushida, T. Makino, Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1, J. Nat. Med. 71 (2017) 131-138.
|
X. Wang, W. Zheng, Q. Shen, et al., Identification and construction of a novel biomimetic delivery system of paclitaxel and its targeting therapy for cancer, Signal. Transduct. Target. Ther. 6 (2021), 33.
|
C. Hong, D. Wang, J. Liang, et al., Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer, Theranostics 9 (2019) 4437-4449.
|
Y.W. Koh, S. Lee, S.Y. Park, Differential expression and prognostic significance of GLUT1 according to histologic type of non-small-cell lung cancer and its association with volume-dependent parameters, Lung Cancer 104 (2017) 31-37.
|
Y. Weng, X. Fan, Y. Bai, et al., SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization, Cell Death Discov. 4 (2018), 38.
|
Y. Zhu, J. Liang, C. Gao, et al., Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy, J. Control. Release 330 (2021) 641-657.
|
M. Wang, Y. Xu, J. Xie, et al., Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome, Biomater. Sci. 9 (2021) 8373-8385.
|
J. Xia, S. Ma, X. Zhu, et al., Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches, Sci. Adv. 8 (2022), eabj1262.
|