Volume 13 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Baocai Xie, Dengfeng Gao, Biqiang Zhou, Shi Chen, Lianrong Wang. New discoveries in the field of metabolism by applying single-cell and spatial omics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 711-725. doi: 10.1016/j.jpha.2023.06.002
Citation: Baocai Xie, Dengfeng Gao, Biqiang Zhou, Shi Chen, Lianrong Wang. New discoveries in the field of metabolism by applying single-cell and spatial omics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 711-725. doi: 10.1016/j.jpha.2023.06.002

New discoveries in the field of metabolism by applying single-cell and spatial omics

doi: 10.1016/j.jpha.2023.06.002
Funds:

This work was supported by the National Key Research and Development Program of China (Program No.: 2019YFA0904300), Shenzhen Science and Technology Program (Program No.: JCYJ20220530150404009), and the Guangdong Basic and Applied Basic Research Foundation (Grant No.: 2022A1515110608).

  • Received Date: Oct. 30, 2022
  • Accepted Date: Jun. 02, 2023
  • Rev Recd Date: May 29, 2023
  • Publish Date: Jun. 04, 2023
  • Single-cell multi-Omics (SCM-Omics) and spatial multi-Omics (SM-Omics) technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs. Since its emergence in 2009, single-cell RNA sequencing (scRNA-seq) has yielded many groundbreaking new discoveries. The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience, developmental biology, and cancer research, especially for assessing tumor heterogeneity and T-cell infiltration. In recent years, the application of these methods in the study of metabolic diseases has also increased. The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate, and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention. Here, we review the evolution of SCM-Omics and SM-Omics technologies, and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases, including obesity, diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases. This review concludes with an overview of the current status of this emerging field and the outlook for its future.
  • loading
  • F. Tang, C. Barbacioru, Y. Wang, et al., mRNA-Seq whole-transcriptome analysis of a single cell, Nat. Methods 6 (2009) 377-382.
    A. Regev, S.A. Teichmann, E.S. Lander, et al., The human cell atlas, eLife 6 (2017), e27041.
    Method of the year 2019:Single-cell multimodal omics, Nat. Meth. 17 (2020), 1.
    V. Marx, Method of the year:Spatially resolved transcriptomics, Nat. Meth. 18 (2021) 9-14.
    D.E. Wagner, A.M. Klein, Lineage tracing meets single-cell omics:Opportunities and challenges, Nat. Rev. Genet. 21 (2020) 410-427.
    S. Vickovic, B. Lotstedt, J. Klughammer, et al., SM-Omics is an automated platform for high-throughput spatial multi-omics, Nat. Commun. 13 (2022), 795.
    A. Chen, S. Liao, M. Cheng, et al., Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays, Cell 185 (2022) 1777-1792.e21.
    A. Jourdon, S. Scuderi, D. Capauto, et al., PsychENCODE and beyond:Transcriptomics and epigenomics of brain development and organoids, Neuropsychopharmacology 46 (2021) 70-85.
    S.Z. Wu, G. Al-Eryani, D.L. Roden, et al., A single-cell and spatially resolved atlas of human breast cancers, Nat. Genet. 53 (2021) 1334-1347.
    J. Yang, M. Vamvini, P. Nigro, et al., Single-cell dissection of the obesity-exercise axis in adipose-muscle tissues implies a critical role for mesenchymal stem cells, Cell Metab. 34 (2022) 1578-1593. e6.
    M. Fasolino, G.W. Schwartz, A.R. Patil, et al., Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes, Nat. Metab. 4 (2022) 284-299.
    P. Ramachandran, K.P. Matchett, R. Dobie, et al., Single-cell technologies in hepatology:New insights into liver biology and disease pathogenesis, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 457-472.
    D.T. Paik, S. Cho, L. Tian, et al., Single-cell RNA sequencing in cardiovascular development, disease and medicine, Nat. Rev. Cardiol. 17 (2020) 457-473.
    I. Gaspar, A. Ephrussi, Strength in numbers:Quantitative single-molecule RNA detection assays, Wiley Interdiscip. Rev. 4 (2015) 135-150.
    M. Asp, J. Bergenstråhle, J. Lundeberg, Spatially resolved transcriptomes-next generation tools for tissue exploration, Bioessays 42 (2020), e1900221.
    X. Qian, K.D. Harris, T. Hauling, et al., Probabilistic cell typing enables fine mapping of closely related cell types in situ, Nat. Meth. 17 (2020) 101-106.
    D. Jovic, X. Liang, H. Zeng, et al., Single-cell RNA sequencing technologies and applications:A brief overview, Clin. Transl. Med. 12 (2022), e694.
    J. Park, J. Kim, T. Lewy, et al., Spatial omics technologies at multimodal and single cell/subcellular level, Genome Biol. 23 (2022), 256.
    M. Stoeckius, C. Hafemeister, W. Stephenson, et al., Simultaneous epitope and transcriptome measurement in single cells, Nat. Methods 14 (2017) 865-868.
    K. Zhang, M. Gao, Z. Chong, et al., Single-cell isolation by a modular single-cell pipette for RNA-sequencing, Lab Chip 16 (2016) 4742-4748.
    I.C. MacAulay, W. Haerty, P. Kumar, et al., G&T-seq:Parallel sequencing of single-cell genomes and transcriptomes, Nat. Meth. 12 (2015) 519-522.
    S. Pott, Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells, eLife 6 (2017), 23203.
    S.A. Vitak, K.A. Torkenczy, J.L. Rosenkrantz, et al., Sequencing thousands of single-cell genomes with combinatorial indexing, Nat. Methods 14 (2017) 302-308.
    T. Nagano, Y. Lubling, T.J. Stevens, et al., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature 502 (2013) 59-64.
    M. Zheng, S.Z. Tian, D. Capurso, et al., Multiplex chromatin interactions with single-molecule precision, Nature 566 (2019) 558-562.
    V. Ramani, X. Deng, R. Qiu, et al., Sci-Hi-C:A single-cell Hi-C method for mapping 3D genome organization in large number of single cells, Methods 170 (2020) 61-68.
    J.D. Buenrostro, B. Wu, U.M. Litzenburger, et al., Single-cell chromatin accessibility reveals principles of regulatory variation, Nature 523 (2015) 486-490.
    D.A. Cusanovich, R. Daza, A. Adey, et al., Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing, Science 348 (2015) 910-914.
    B.B. Lake, S. Chen, B.C. Sos, et al., Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain, Nat. Biotechnol. 36 (2018) 70-80.
    J. Cao, D.A. Cusanovich, V. Ramani, et al., Joint profiling of chromatin accessibility and gene expression in thousands of single cells, Science 361 (2018) 1380-1385.
    C.A. Lareau, F.M. Duarte, J.G. Chew, et al., Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility, Nat. Biotechnol. 37 (2019) 916-924.
    Y. Hu, Z. Jiang, K. Chen, et al., scNanoATAC-seq:A long-read single-cell ATAC sequencing method to detect chromatin accessibility and genetic variants simultaneously within an individual cell, Cell Res. 33 (2023) 83-86.
    C. Luo, C.L. Keown, L. Kurihara, et al., Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex, Science 357 (2017) 600-604.
    H. Guo, P. Zhu, X. Wu, et al., Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing, Genome Res. 23 (2013) 2126-2135.
    S.A. Smallwood, H.J. Lee, C. Angermueller, et al., Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity, Nat. Methods 11 (2014) 817-820.
    R.M. Mulqueen, D. Pokholok, S.J. Norberg, et al., Highly scalable generation of DNA methylation profiles in single cells, Nat. Biotechnol. 36 (2018) 428-431.
    C. Angermueller, S.J. Clark, H.J. Lee, et al., Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity, Nat. Methods 13 (2016) 229-232.
    G. Haimovich, J.E. Gerst, Single-molecule fluorescence in situ hybridization (smFISH) for RNA detection in adherent animal cells, Bio-protocol 8 (2018), e3070.
    A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420.
    J.G. Gall, M.L. Pardue, Formation and detection of RNA-DNA hybrid molecules in cytological preparations, Proc. Natl. Acad. Sci. USA 63 (1969) 378-383.
    M.L. Reyzer, P. Chaurand, P.M. Angel, et al., Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry, Methods Mol Biol. 656 (2010) 285-301.
    P. Lasch, W. Haensch, D. Naumann, et al., Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1688 (2004) 176-186.
    P.O. Krutzik, G.P. Nolan, Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling, Nat. Methods 3 (2006) 361-368.
    A. Gordon, A. Colman-Lerner, T.E. Chin, et al., Single-cell quantification of molecules and rates using open-source microscope-based cytometry, Nat. Meth. 4 (2007) 175-181.
    D. Wang, S. Bodovitz, Single cell analysis:The new frontier in 'omics', Trends Biotechnol. 28 (2010) 281-290.
    F. Porichis, M.G. Hart, M. Griesbeck, et al., High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry, Nat. Commun. 5 (2014), 5641.
    D. Duan, K. Zheng, Y. Shen, et al., Label-free high-throughput microRNA expression profiling from total RNA, Nucleic Acids Res 39 (2011), e154.
    K. Achim, J.B. Pettit, L.R. Saraiva, et al., High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin, Nat. Biotechnol. 33 (2015) 503-509.
    R. Satija, J.A. Farrell, D. Gennert, et al., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol. 33 (2015) 495-502.
    W.C. Boon, K. Petkovic-Duran, Y. Zhu, et al., Increasing cDNA yields from single-cell quantities of mRNA in standard laboratory reverse transcriptase reactions using acoustic microstreaming, J Vis Exp. (2011), e3144.
    F. Wang, J. Flanagan, N. Su, et al., RNAscope:A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues, J. Mol. Diagn. 14 (2012) 22-29.
    R. Ke, M. Mignardi, A. Pacureanu, et al., In situ sequencing for RNA analysis in preserved tissue and cells, Nat. Methods 10 (2013) 857-860.
    D. Lovatt, B.K. Ruble, J. Lee, et al., Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue, Nat. Meth. 11 (2014) 190-196.
    J.H. Lee, E.R. Daugharthy, J. Scheiman, et al., Highly multiplexed subcellular RNA sequencing in situ, Science 343 (2014) 1360-1363.
    J.P. Junker, E.S. Noel, V. Guryev, et al., Genome-wide RNA tomography in the zebrafish embryo, Cell 159 (2014) 662-675.
    K.H. Chen, A.N. Boettiger, J.R. Moffitt, et al., RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells, Science 348 (2015), aaa6090.
    P.L. Ståhl, F. Salmén, S. Vickovic, et al., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics, Science 353 (2016) 78-82.
    S. Shah, E. Lubeck, M. Schwarzkopf, et al., Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing, Development 143 (2016) 2862-2867.
    C. Medaglia, A. Giladi, L. Stoler-Barak, et al., Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 358 (2017) 1622-1626.
    S. Codeluppi, L.E. Borm, A. Zeisel, et al., Spatial organization of the somatosensory cortex revealed by osmFISH, Nat. Methods 15 (2018) 932-935.
    X. Chen, Y.C. Sun, G.M. Church, et al., Efficient in situ barcode sequencing using padlock probe-based BaristaSeq, Nucleic Acids Res. 46 (2018), e22.
    J. Chen, S. Suo, P.P. Tam, et al., Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq, Nat. Protoc. 12 (2017) 566-580.
    X. Wang, W.E. Allen, M.A. Wright, et al., Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science 361 (2018), eaat5691.
    F.M. Fazal, S. Han, K.R. Parker, et al., Atlas of subcellular RNA localization revealed by APEX-seq, Cell 178 (2019) 473-490.e26.
    J.R. Moffitt, D. Bambah-Mukku, S.W. Eichhorn, et al., Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region, Science 362 (2018), eaau5324.
    S. Vickovic, G. Eraslan, F. Salmén, et al., High-definition spatial transcriptomics for in situ tissue profiling, Nat. Methods 16 (2019) 987-990.
    C.L. Eng, M. Lawson, Q. Zhu, et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature 568 (2019) 235-239.
    K.H. Hu, J.P. Eichorst, C.S. McGinnis, et al., ZipSeq:Barcoding for real-time mapping of single cell transcriptomes, Nat. Methods 17 (2020) 833-843.
    Y. Liu, M. Yang, Y. Deng, et al., High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue, Cell 183 (2020) 1665-1681.e18.
    J.J.L. Goh, N. Chou, W.Y. Seow, et al., Highly specific multiplexed RNA imaging in tissues with split-FISH, Nat. Methods 17 (2020) 689-693.
    Y. Lee, D. Bogdanoff, Y. Wang, et al., XYZeq:Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment, Sci. Adv. 7 (2021), eabg4755.
    S.R. Srivatsan, M.C. Regier, E. Barkan, et al., Embryo-scale, single-cell spatial transcriptomics, Science 373 (2021) 111-117.
    A.S. Genshaft, C.G.K. Ziegler, C.N. Tzouanas, et al., Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes, Nat. Commun., 12 (2021), 4995
    J.L. Marshall, T. Noel, Q.S. Wang, et al., High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways, iScience 25 (2022), 104097.
    C.S. Cho, J. Xi, Y. Si, et al., Microscopic examination of spatial transcriptome using Seq-Scope, Cell 184 (2021) 3559-3572.e22.
    R. Moncada, D. Barkley, F. Wagner, et al., Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas, Nat. Biotechnol. 38 (2020) 333-342.
    S.K. Longo, M.G. Guo, A.L. Ji, et al., Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics, Nat. Rev. Genet. 22 (2021) 627-644.
    D. Dar, N. Dar, L. Cai, et al., Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution, Science 373 (2021), eabi4882.
    Z. Zeng, Y. Li, Y. Li, et al., Statistical and machine learning methods for spatially resolved transcriptomics data analysis, Genome Biol. 23 (2022), 83.
    R. Shen, L. Liu, Z. Wu, et al., Spatial-ID:A cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding, Nat. Commun. 13 (2022), 7640.
    S. Eddy, L.H. Mariani, M. Kretzler, Integrated multi-omics approaches to improve classification of chronic kidney disease, Nat. Rev. Nephrol. 16 (2020) 657-668.
    Y. Li, L. Ma, D. Wu, et al., Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine, Brief. Bioinform. 22 (2021), bbab024.
    S.L. Friedman, M. Pinzani, Hepatic fibrosis 2022:Unmet needs and a blueprint for the future, Hepatology 75 (2022) 473-488.
    L. Zhang, D. Chen, D. Song, et al., Clinical and translational values of spatial transcriptomics, Signal Transduct. Target. Ther. 7 (2022), 111.
    A. Rosengren, Obesity and cardiovascular health:The size of the problem, Eur Heart J 42 (2021) 3404-3406.
    M. Shao, L. Vishvanath, N.C. Busbuso, et al., De novo adipocyte differentiation from Pdgfrβ+ preadipocytes protects against pathologic visceral adipose expansion in obesity, Nat. Commun. 9 (2018), 890.
    J.I. Kim, J.Y. Huh, J.H. Sohn, et al., Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation, Mol. Cell. Biol. 35 (2015) 1686-1699.
    K. Shinoda, I.H.N. Luijten, Y. Hasegawa, et al., Genetic and functional characterization of clonally derived adult human brown adipocytes, Nat. Med. 21 (2015) 389-394.
    E.A. Rondini, J.G. Granneman, Single cell approaches to address adipose tissue stromal cell heterogeneity, Biochem. J. 477 (2020) 583-600.
    T.K. Olsen, N. Baryawno, Introduction to single-cell RNA sequencing, Curr. Protoc. Mol. Biol. 122 (2018), e57.
    P.C. Schwalie, H. Dong, M. Zachara, et al., A stromal cell population that inhibits adipogenesis in mammalian fat depots, Nature 559 (2018) 103-108.
    C. Hepler, B. Shan, Q. Zhang, et al., Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice, eLife 7 (2018), e39636.
    D. Merrick, A. Sakers, Z. Irgebay, et al., Identification of a mesenchymal progenitor cell hierarchy in adipose tissue, Science 364 (2019), eaav2501.
    A.D. Hildreth, F. Ma, Y.Y. Wong, et al., Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity, Nat. Immunol. 22 (2021) 639-653.
    J. Vijay, M.F. Gauthier, R.L. Biswell, et al., Single-cell analysis of human adipose tissue identifies depot and disease specific cell types, Nat. Metab. 2 (2020) 97-109.
    J.R. Acosta, S. Joost, K. Karlsson, et al., Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population, Stem Cell Res. Ther. 8 (2017), 250.
    M.P. Emont, C. Jacobs, A.L. Essene, et al., A single-cell atlas of human and mouse white adipose tissue, Nature 603 (2022) 926-933.
    W. Gu, W.N. Nowak, Y. Xie, et al., Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling, Arterioscler. Thromb. Vasc. Biol. 39 (2019) 2049-2066.
    R.B. Burl, V.D. Ramseyer, E.A. Rondini, et al., Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling, Cell Metab. 28 (2018) 300-309.e4.
    D.S. Cho, B. Lee, J.D. Doles, Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling, Life Sci. Alliance 2 (2019), e201900561.
    W. Sun, H. Dong, M. Balaz, et al., snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis, Nature 587 (2020) 98-102.
    P. Rajbhandari, D. Arneson, S.K. Hart, et al., Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes, eLife 8 (2019), e49501.
    A.K. Sárvári, E.L. Van Hauwaert, L.K. Markussen, et al., Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution, Cell Metab. 33 (2021) 437-453.e5.
    K.L. Whytock, Y. Sun, A. Divoux, et al., Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations, iScience 25 (2022), 104772.
    J. Bäckdahl, L. Franzén, L. Massier, et al., Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin, Cell Metab. 33 (2021) 1869-1882.e6.
    P. Alonso-Magdalena, I. Quesada, A. Nadal, Endocrine disruptors in the etiology of type 2 diabetes mellitus, Nat. Rev. Endocrinol. 7 (2011) 346-353.
    P. Saeedi, I. Petersohn, P. Salpea, et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:Results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pract. 157 (2019), 107843.
    M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes, Nature 576 (2019) 51-60.
    Y. Guo, Z. Huang, D. Sang, et al., The role of nutrition in the prevention and intervention of type 2 diabetes, Front. Bioeng. Biotechnol. 8 (2020), 575442.
    D.M. Riddy, P. Delerive, R.J. Summers, et al., G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus, Pharmacol. Rev. 70 (2018) 39-67.
    J. Almaça, A. Caicedo, L. Landsman, Beta cell dysfunction in diabetes:The islet microenvironment as an unusual suspect, Diabetologia 63 (2020) 2076-2085.
    R. Arrojo e Drigo, Y. Ali, J. Diez, et al., New insights into the architecture of the islet of Langerhans:A focused cross-species assessment, Diabetologia 58 (2015) 2218-2228.
    E.R. Unanue, Macrophages in endocrine glands, with emphasis on pancreatic islets. Myeloid Cells in Health and Disease:A Synthesis, Chapter 48, Wiley, Hoboken, 2017, pp. 825-831.
    O. Cabrera, D.M. Berman, N.S. Kenyon, et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 2334-2339.
    C.J. Lam, A.R. Cox, D.R. Jacobson, et al., Highly proliferative α-cell-related islet endocrine cells in human pancreata, Diabetes 67 (2018) 674-686.
    M. Brissova, R. Haliyur, D. Saunders, et al., α cell function and gene expression are compromised in type 1 diabetes, Cell Rep. 22 (2018) 2667-2676.
    C. Dai, M. Brissova, R.B. Reinert, et al., Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis, Diabetes 62 (2013) 4144-4153.
    S. Demir, P.P. Nawroth, S. Herzig, et al., Emerging targets in type 2 diabetes and diabetic complications, Adv. Sci. 8 (2021), 2100275.
    D. Grün, A. van Oudenaarden, Design and analysis of single-cell sequencing experiments, Cell 163 (2015) 799-810.
    R. Dorajoo, Y. Ali, V.S.Y. Tay, et al., Single-cell transcriptomics of east-asian pancreatic islets cells, Sci. Rep. 7 (2017), 5024.
    Y.J. Wang, J. Schug, K.J. Won, et al., Single-cell transcriptomics of the human endocrine pancreas, Diabetes 65 (2016) 3028-3038.
    M.J. Muraro, G. Dharmadhikari, D. Grun, et al., A single-cell transcriptome atlas of the human pancreas, Cell Syst. 3 (2016) 385-394.e3.
    Å. Segerstolpe, A. Palasantza, P. Eliasson, et al., Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes, Cell Metab. 24 (2016) 593-607.
    J. Li, J. Klughammer, M. Farlik, et al., Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types, EMBO Rep. 17 (2016) 178-187.
    N. Lawlor, J. George, M. Bolisetty, et al., Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes, Genome Res. 27 (2017) 208-222.
    A.T N. Lam, M.A. Aksit, B. Vecchio-Pagan, et al., Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis, J. Clin. Investig. 130 (2020) 272-286.
    P.S. Linsley, F. Barahmand-Pour-Whitman, E. Balmas, et al., Autoreactive T cell receptors with shared germline-like alpha chains in type 1 diabetes, JCI Insight 6 (2021), e151349.
    M. Saikia, M.M. Holter, L.R. Donahue, et al., GLP-1 receptor signaling increases PCSK1 and beta cell features in human alpha cells, JCI Insight 6 (2021), e141851.
    C. Su, L. Gao, C.L. May, et al., 3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk, Cell Metab. 34 (2022) 1394-1409.e4.
    D.E. Stanescu, R. Yu, K.J. Won, et al., Single cell transcriptomic profiling of mouse pancreatic progenitors, Physiol. Genom. 49 (2017) 105-114.
    C. Zeng, F. Mulas, Y. Sui, et al., Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation, Cell Metab. 25 (2017) 1160-1175.e11.
    N. Sharon, R. Chawla, J. Mueller, et al., A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets, Cell 176 (2019) 790-804.e13.
    A.M. Hendley, A.A. Rao, L. Leonhardt, et al., Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree, eLife 10 (2021), 67776.
    Y. Xin, J. Kim, M. Ni, et al., Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 3293-3298.
    G. Basile, S. Kahraman, E. Dirice, et al., Using single-nucleus RNA-sequencing to interrogate transcriptomic profiles of archived human pancreatic islets, Genome Med. 13 (2021), 128.
    N.A.J. Krentz, M.Y.Y. Lee, E.E. Xu, et al., Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors, Stem Cell Rep. 11 (2018) 1551-1564.
    D. Wang, J. Wang, L. Bai, et al., Long-term expansion of pancreatic islet organoids from resident procr+ progenitors, Cell 180 (2020) 1198-1211.e19.
    S. Sachs, A. Bastidas-Ponce, S. Tritschler, et al., Targeted pharmacological therapy restores β-cell function for diabetes remission, Nat. Metab. 2 (2020) 192-209.
    T. Fukaishi, Y. Nakagawa, A. Fukunaka, et al., Characterisation of Ppy-lineage cells clarifies the functional heterogeneity of pancreatic beta cells in mice, Diabetologia 64 (2021) 2803-2816.
    P.N. Zakharov, H. Hu, X. Wan, et al., Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes, J. Exp. Med. 217 (2020), e20192362.
    P. Chen, F. Yao, Y. Lu, et al., Single-cell landscape of mouse islet allograft and syngeneic graft, Front. Immunol. 13 (2022), 853349.
    E. Duvall, C.M. Benitez, K. Tellez, et al., Single-cell transcriptome and accessible chromatin dynamics during endocrine pancreas development, Proc Natl Acad Sci U S A. 119 (2022), e2201267119.
    C. Sona, Y.T. Yeh, A. Patsalos, et al., Evidence of islet CADM1-mediated immune cell interactions during human type 1 diabetes, JCI Insight. 7 (2022), e153136.
    Z.M. Younossi, A.B. Koenig, D. Abdelatif, et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology 64 (2016) 73-84.
    Z. Younossi, Q.M. Anstee, M. Marietti, et al., Global burden of NAFLD and NASH:Trends, predictions, risk factors and prevention, Nat. Rev. Gastroenterol. Hepatol. 15 (2018) 11-20.
    J.V. Lazarus, H.E. Mark, Q.M. Anstee, et al., Advancing the global public health agenda for NAFLD:A consensus statement, Nat. Rev. Gastroenterol. Hepatol. 19 (2022) 60-78.
    J. Wang, W. He, P.J. Tsai, et al., Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease, Lipids Health Dis. 19 (2020), 72.
    T.D. Challa, S. Wueest, F.C. Lucchini, et al., Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis, EMBO Mol Med. 11 (2019), e10124.
    T.G. Cotter, M. Rinella, Nonalcoholic fatty liver disease 2020:The state of the disease, Gastroenterology 158 (2020) 1851-1864.
    K.C. Sung, W.S. Jeong, S.H. Wild, et al., Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes, Diabetes Care 35 (2012) 717-722.
    J. Cai, X. Zhang, Y. Ji, et al., Nonalcoholic fatty liver disease pandemic fuels the upsurge in cardiovascular diseases, Circ. Res. 126 (2020) 679-704.
    E. Barreby, P. Chen, M. Aouadi, Macrophage functional diversity in NAFLD-More than inflammation, Nat. Rev. Endocrinol. 18 (2022) 461-472.
    M.V. Machado, A.M. Diehl, Pathogenesis of nonalcoholic steatohepatitis, Gastroenterology 150 (2016) 1769-1777.
    R. Tang, R. Li, H. Li, et al., Design of hepatic targeted drug delivery systems for natural products:Insights into nomenclature revision of nonalcoholic fatty liver disease, ACS Nano 15 (2021) 17016-17046.
    O. Govaere, S. Cockell, D. Tiniakos, et al., Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis, Sci. Transl. Med. 12 (2020), eaba4448.
    B. Gapp, M. Jourdain, P. Bringer, et al., Farnesoid X receptor agonism, acetyl-coenzyme A carboxylase inhibition, and back translation of clinically observed endpoints of de novo lipogenesis in a murine NASH model, Hepatol. Commun. 4 (2020) 109-125.
    Z. Wang, A. Keogh, A. Waldt, et al., Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis, Sci. Rep. 11 (2021), 19396.
    S.A. MacParland, J.C. Liu, X. Ma, et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations, Nat. Commun. 9 (2018), 4383.
    T.S. Andrews, J. Atif, J.C. Liu, et al., Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity, Hepatol. Commun. 6 (2022) 821-840.
    K. Diamanti, J.S. Inda Díaz, A. Raine, et al., Single nucleus transcriptomics data integration recapitulates the major cell types in human liver, Hepatol. Res. 51 (2021) 233-238.
    R. Zhang, B. Zhong, J. He, et al., Single-cell transcriptomes identifies characteristic features of mouse macrophages in liver Mallory-Denk bodies formation, Exp. Mol. Pathol. 127 (2022), 104811.
    Q. Su, S.Y. Kim, F. Adewale, et al., Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver, iScience 24 (2021), 103233.
    X. Xiong, H. Kuang, S. Ansari, et al., Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis, Mol. Cell 75 (2019) 644-660.e5.
    K.B. Halpern, R. Shenhav, O. Matcovitch-Natan, et al., Single-cell spatial reconstruction reveals global division of labour in the mammalian liver, Nature 542 (2017) 352-356.
    J. Qing, Y. Ren, Y. Zhang, et al., Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis, J. Hepatol. 76 (2022) 394-406.
    J.S. Seidman, T.D. Troutman, M. Sakai, et al., Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis, Immunity 52 (2020) 1057-1074.e7.
    T. Gwag, R.G. Reddy Mooli, D. Li, et al., Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease, JHEP Rep. 3 (2021), 100193.
    S.R. Park, C.S. Cho, J. Xi, et al., Holistic characterization of single-hepatocyte transcriptome responses to high-fat diet, Am. J. Physiol. Endocrinol. Metab. 320 (2021) E244-E258.
    H. Zhang, Y. Ma, X. Cheng, et al., Targeting epigenetically maladapted vascular niche alleviates liver fibrosis in nonalcoholic steatohepatitis, Sci. Transl. Med. 13 (2021), eabd1206.
    R. Arena, C.J. Lavie, The global path forward-Healthy Living for Pandemic Event Protection (HL-PIVOT), Prog. Cardiovasc. Dis. 64 (2021) 96-101.
    P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533.[LinkOut]
    K.M. Pencina, G. Thanassoulis, J.T. Wilkins, et al., Trajectories of non-HDL cholesterol across midlife, J. Am. Coll. Cardiol. 74 (2019) 70-79.
    J.S. Rana, S.M. Boekholdt, J.J.P. Kastelein, et al., The role of non-HDL cholesterol in risk stratification for coronary artery disease, Curr. Atheroscler. Rep. 14 (2012) 130-134.
    G. Pilia, W.M. Chen, A. Scuteri, et al., Heritability of cardiovascular and personality traits in 6,148 Sardinians, PLoS Genet. 2 (2006), e132.
    M.S. Brown, J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis, Science 232 (1986) 34-47.
    J. Defesche, Low-density lipoprotein receptor-its structure, function, and mutations, Semin. Vasc. Med. 4 (2004) 5-11.
    J. Wang, L. Li, A. Hu, et al., Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion, Nature 608 (2022) 413-420.
    B. Xie, X. Shi, Y. Li, et al., Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans, PLoS Genet. 17 (2021), e1009891.
    M. Abifadel, M. Varret, J.P. Rabes, et al., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat. Genet. 34 (2003) 154-156.
    T.A. Lagace, D.E. Curtis, R. Garuti, et al., Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice, J. Clin. Invest. 116 (2006) 2995-3005.
    Y.Y. Zhang, Z.Y. Fu, J. Wei, et al., A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption, Science 360 (2018) 1087-1092.
    H.R. Davis, E.P. Veltri, Zetia:Inhibition of niemann-pick C1 like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia, J. Atheroscler. Thromb. 14 (2007) 99-108.
    H.R. Davis, L. Zhu, L.M. Hoos, et al., Niemann-pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis, J. Biol. Chem. 279 (2004) 33586-33592.
    N.R. Tucker, M. Chaffin, S.J. Fleming, et al., Transcriptional and cellular diversity of the human heart, Circulation 142 (2020) 466-482.
    M. Litviňuková, C. Talavera-López, H. Maatz, et al., Cells of the adult human heart, Nature 588 (2020) 466-472.
    L. Wang, P. Yu, B. Zhou, et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function, Nat. Cell Biol. 22 (2020) 108-119.
    Y. Cui, Y. Zheng, X. Liu, et al., Single-cell transcriptome analysis maps the developmental track of the human heart, Cell Rep. 26 (2019) 1934-1950.e5.
    M. Asp, S. Giacomello, L. Larsson, et al., A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart, Cell 179 (2019) 1647-1660.e19.
    F. Lescroart, X. Wang, X. Lin, et al., Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq, Science 359 (2018) 1177-1181.
    M. Wehrens, A.E. de Leeuw, M. Wright-Clark, et al., Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy, Cell Rep. 39 (2022), 110809.
    D.M. Fernandez, A.H. Rahman, N.F. Fernandez, et al., Single-cell immune landscape of human atherosclerotic plaques, Nat. Med. 25 (2019) 1576-1588.
    Z. Zhang, J. Huang, Y. Wang, et al., Transcriptome analysis revealed a two-step transformation of vascular smooth muscle cells to macrophage-like cells, Atherosclerosis 346 (2022) 26-35.
    H. Winkels, E. Ehinger, M. Vassallo, et al., Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry, Circ Res. 122 (2018) 1675-1688.
    C. Cochain, E. Vafadarnejad, P. Arampatzi, et al., Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis, Circ. Res. 122 (2018) 1661-1674.
    L. He, M. Vanlandewijck, M.A. Mae, et al., Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types, Sci. Data 5 (2018), 180160.
    N. Farbehi, R. Patrick, A. Dorison, et al., Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury, eLife 8 (2019), e43882.
    J. Kalucka, L.P.M.H. de Rooij, J. Goveia, et al., Single-cell transcriptome atlas of murine endothelial cells, Cell 180 (2020) 764-779.e20.
    J. Rodor, S.H. Chen, J.P. Scanlon, et al., Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension, Cardiovasc Res. 118 (2022) 2519-2534.
    A. Zernecke, H. Winkels, C. Cochain, et al., Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas, Circ. Res. 127 (2020) 402-426.
    J. Lin, H. Nishi, J. Poles, et al., Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression, JCI Insight 4 (2019), e124574.
    J.E. Cole, I. Park, D.J. Ahern, et al., Immune cell census in murine atherosclerosis:Cytometry by time of flight illuminates vascular myeloid cell diversity, Cardiovasc Res. 114 (2018) 1360-1371.
    G. Zhao, H. Lu, Y. Liu, et al., Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis, Front. Cell Dev. Biol. 9 (2021), 689469.
    L. Yu, J. Zhang, A. Gao, et al., An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation, Signal Transduct. Target. Ther. 7 (2022), 125.
    W. Zhang, S. Zhang, P. Yan, et al., A single-cell transcriptomic landscape of primate arterial aging, Nat. Commun. 11 (2020), 2202.
    L. Han, X. Wei, C. Liu, et al., Cell transcriptomic atlas of the non-human primate Macaca fascicularis, Nature 604 (2022) 723-731.
    J. Qu, F. Yang, T. Zhu, et al., A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys, Nat. Commun. 13 (2022), 4069.
    Y. Li, Y. Cao, F. Liu, et al., Visualization and analysis of gene expression in stanford type A aortic dissection tissue section by spatial transcriptomics, Front. Genet. 12 (2021), 698124.
    C. Kuppe, R.O. Ramirez Flores, Z. Li, et al., Spatial multi-omic map of human myocardial infarction, Nature 608 (2022) 766-777.
    S. McArdle, K. Buscher, Y. Ghosheh, et al., Migratory and dancing macrophage subsets in atherosclerotic lesions, Circ. Res. 125 (2019) 1038-1051.
    E.I. Crosse, S. Gordon-Keylock, S. Rybtsov, et al., Multi-layered spatial transcriptomics identify secretory factors promoting human hematopoietic stem cell development, Cell Stem Cell 27 (2020) 822-839.e8.
    M. Mohenska, N.M. Tan, A. Tokolyi, et al., 3D-cardiomics:A spatial transcriptional atlas of the mammalian heart, J. Mol. Cell. Cardiol. 163 (2022) 20-32.
    C. Tay, P. Kanellakis, H. Hosseini, et al., B cell and CD4 T cell interactions promote development of atherosclerosis, Front. Immunol. 10 (2019), 3046.
    G.K. Hansson, P. Libby, The immune response in atherosclerosis:A double-edged sword, Nat. Rev. Immunol. 6 (2006) 508-519.
    J.L. Stöger, M.J. Gijbels, S. van der Velden, et al., Distribution of macrophage polarization markers in human atherosclerosis, Atherosclerosis 225 (2012) 461-468.
    H. Winkels, E. Ehinger, Y. Ghosheh, et al., Atherosclerosis in the single-cell era, Curr. Opin. Lipidol. 29 (2018) 389-396.
    Z. Song, P. Gao, X. Zhong, et al., Identification of five hub genes based on single-cell RNA sequencing data and network pharmacology in patients with acute myocardial infarction, Front. Public Heath 10 (2022), 894129.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (209) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return