Volume 13 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Wentao Li, Chongyu Shao, Chang Li, Huifen Zhou, Li Yu, Jiehong Yang, Haitong Wan, Yu He. Metabolomics: A useful tool for ischemic stroke research[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 968-983. doi: 10.1016/j.jpha.2023.05.015
Citation: Wentao Li, Chongyu Shao, Chang Li, Huifen Zhou, Li Yu, Jiehong Yang, Haitong Wan, Yu He. Metabolomics: A useful tool for ischemic stroke research[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 968-983. doi: 10.1016/j.jpha.2023.05.015

Metabolomics: A useful tool for ischemic stroke research

doi: 10.1016/j.jpha.2023.05.015
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 81873226, and 81874366), and the Zhejiang Provincial Science and Technology Innovation Leading Talent Project of “Ten Thousand Talents Plan” (2019).

  • Received Date: Feb. 17, 2023
  • Accepted Date: May 29, 2023
  • Rev Recd Date: May 14, 2023
  • Publish Date: Jun. 03, 2023
  • Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.
  • loading
  • J.B. German, B.D. Hammock, S.M. Watkins, Metabolomics: Building on a century of biochemistry to guide human health, Metabolomics 1 (2005) 3-9.
    D.S. Wishart, Applications of metabolomics in drug discovery and development, Drugs R D 9 (2008) 307-322.
    R. Kaddurah-Daouk, B.S. Kristal, R.M. Weinshilboum, Metabolomics: A global biochemical approach to drug response and disease, Annu. Rev. Pharmacol. Toxicol. 48 (2008) 653-683.
    S. Paul, E. Candelario-Jalil, Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies, Exp. Neurol. 335 (2021), 113518.
    M. Katan, A. Luft, Global burden of stroke, Semin. Neurol. 38 (2018) 208-211.
    L.G. De Lima, B.G.O. Soares, H. Saconato, et al., Beta-blockers for preventing stroke recurrence, Cochrane Database Syst. Rev. (2013), CD007890.
    Manolescu, Oprea, Mititelu, et al., Dietary anthocyanins and stroke: A review of pharmacokinetic and pharmacodynamic studies, Nutrients 11 (2019), 1479.
    S. Xu, J. Lu, A. Shao, et al., Glial cells: Role of the immune response in ischemic stroke, Front. Immunol. 11 (2020), 294.
    T. Russo, G. Felzani, C. Marini, Stroke in the very old: A systematic review of studies on incidence, outcome, and resource use, J. Aging Res. 2011 (2011), 108785.
    L. Wang, Z. Wang, J. Shi, et al., Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates neuronal apoptosis following focal cerebral ischemia via apolipoprotein E receptor 2 downregulation in hyperlipidemic mice, Int. J. Mol. Med. (2018) 2098-2106.
    I. Deguchi, S. Mizuno, S. Kohyama, et al., Drip-and-ship thrombolytic therapy for acute ischemic stroke, J. Stroke Cerebrovasc. Dis. 27 (2018) 61-67.
    P. Li, R.A. Stetler, R.K. Leak, et al., Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery, Neuropharmacology 134 (2018) 208-217.
    A.M. Gori, B. Giusti, B. Piccardi, et al., Inflammatory and metalloproteinases profiles predict three-month poor outcomes in ischemic stroke treated with thrombolysis, J. Cereb. Blood Flow Metab. 37 (2017) 3253-3261.
    D. Zou, M. Luo, Z. Han, et al., Activation of alpha-7 nicotinic acetylcholine receptor reduces brain edema in mice with ischemic stroke and bone fracture, Mol. Neurobiol. 54 (2017) 8278-8286.
    H. Chen, S. Qi, J. Shen, One-compound-multi-target: Combination prospect of natural compounds with thrombolytic therapy in acute ischemic stroke, Curr. Neuropharmacol. 15 (2016) 134-156.
    X. Wang, H. Sun, A. Zhang, et al., Potential role of metabolomics apporoaches in the area of traditional Chinese medicine: As Pillars of the bridge between Chinese and Western medicine, J. Pharm. Biomed. Anal. 55 (2011) 859-868.
    A. Zhang, H. Sun, Z. Wang, et al., Metabolomics: Towards understanding traditional Chinese medicine, Planta Med. 76 (2010) 2026-2035.
    H. Luan, X. Wang, Z. Cai, Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders, Mass Spectrom. Rev. 38 (2019) 22-33.
    D.S. Wishart, Advances in metabolite identification, Bioanalysis 3 (2011) 1769-1782.
    G.A. Nagana Gowda, D. Raftery, NMR-based metabolomics. Cancer Metabolomics. Cham: Springer, 2021: 19-37.
    D.S. Wishart, NMR metabolomics: A look ahead, J. Magn. Reson. 306 (2019) 155-161.
    A. Zhang, H. Sun, P. Wang, et al., Modern analytical techniques in metabolomics analysis, Analyst 137 (2012) 293-300.
    W.B. Dunn, N.J.C. Bailey, H.E. Johnson, Measuring the metabolome: Current analytical technologies, Analyst 130 (2005) 606-625.
    E.M. Weaver, A.B. Hummon, Imaging mass spectrometry: From tissue sections to cell cultures, Adv. Drug Deliv. Rev. 65 (2013) 1039-1055.
    J. Balog, L. Sasi-Szabo, J. Kinross, et al., Intraoperative tissue identification using rapid evaporative ionization mass spectrometry, Sci. Transl. Med. 5 (2013), e3005623.
    C.H. Cullen, G.J. Ray, C.M. Szabo, A comparison of quantitative nuclear magnetic resonance methods: Internal, external, and electronic referencing, Magn. Reson. Chem. 51 (2013) 705-713.
    Q. Liang, Q. Wang, Y. Wang, et al., Quantitative 1H-NMR spectroscopy for profiling primary metabolites in mulberry leaves, Molecules 23 (2018), 554.
    S. Singh, R. Roy, The application of absolute quantitative 1H NMR spectroscopy in drug discovery and development, Expert Opin. Drug Discov. 11 (2016) 695-706.
    C. Simmler, J.G. Napolitano, J.B. McAlpine, et al., Universal quantitative NMR analysis of complex natural samples, Curr. Opin. Biotechnol. 25 (2014) 51-59.
    Y. Shao, W. Le, Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease, Mol. Neurodegener. 14 (2019), 3.
    J.H. Grimes, T.M. O’Connell, The application of micro-coil NMR probe technology to metabolomics of urine and serum, J. Biomol. NMR 49 (2011) 297-305.
    Y. Xi, J.S. de Ropp, M.R. Viant, et al., Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy, Anal. Chim. Acta 614 (2008) 127-133.
    G. Theodoridis, H.G. Gika, I.D. Wilson, Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies, Mass Spectrom. Rev. 30 (2011) 884-906.
    Z. Yu, H. Huang, A. Reim, et al., Optimizing 2D gas chromatography mass spectrometry for robust tissue, serum and urine metabolite profiling, Talanta 165 (2017) 685-691.
    R.A. Neese, E.W. Gertz, J.A. Wisneski, et al., A stable isotope technique for investigating lactate metabolism in humans, Biomed. Mass Spectrom. 10 (1983) 458-462.
    O. Fiehn, J. Kopka, P. Dormann, et al., Metabolite profiling for plant functional genomics, Nat. Biotechnol. 18 (2000) 1157-1161.
    G.A. Theodoridis, H.G. Gika, E.J. Want, et al., Liquid chromatography-mass spectrometry based global metabolite profiling: A review, Anal. Chim. Acta 711 (2012) 7-16.
    M. Venti, L. Parnetti, V. Gallai, Genetics of ischemic stroke, Clin. Exp. Hypertens. 24 (2002) 531-534.
    S. Djebali, C.A. Davis, A. Merkel, et al., Landscape of transcription in human cells, Nature 489 (2012) 101-108.
    A.F. Palazzo, E.S. Lee, Non-coding RNA: What is functional and what is junk? Front. Genet. 6 (2015), 2.
    J. Zhao, J. Xu, W. Wang, et al., Long non-coding RNA LINC-01572: 28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome, SSRN Electron. J. (2018): 526-538.
    A. Akella, S. Bhattarai, A. Dharap, Long noncoding RNAs in the pathophysiology of ischemic stroke, NeuroMolecular Med. 21 (2019) 474-483.
    X. Chen, H. Chen, M. Xu, et al., Targeting reactive nitrogen species: A promising therapeutic strategy for cerebral ischemia-reperfusion injury, Acta Pharmacol. Sin. 34 (2013) 67-77.
    C.L. Allen, U. Bayraktutan, Oxidative stress and its role in the pathogenesis of ischaemic stroke, Int. J. Stroke 4 (2009) 461-470.
    M. Sun, H. Jin, X. Sun, et al., Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy, Oxid. Med. Cell. Longev. 2018 (2018), 3804979.
    A. Cherubini, C. Ruggiero, M.C. Polidori, et al., Potential markers of oxidative stress in stroke, Free. Radic. Biol. Med. 39 (2005) 841-852.
    J.T. Coyle, P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262 (1993) 689-695.
    T. Sugawara, P.H. Chan, Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia, Antioxid. Redox Signal. 5 (2003) 597-607.
    F.M. Faraci, Reactive oxygen species: Influence on cerebral vascular tone, J. Appl. Physiol. 100 (2006) 739-743.
    R.W. Neumar, Molecular mechanisms of ischemic neuronal injury, Ann. Emerg. Med. 36 (2000) 483-506.
    S.E. Gariballa, T.P. Hutchin, A.J. Sinclair, Antioxidant capacity after acute ischaemic stroke, QJM 95 (2002) 685-690.
    I. Margaill, M. Plotkine, D. Lerouet, Antioxidant strategies in the treatment of stroke, Free. Radic. Biol. Med. 39 (2005) 429-443.
    K. Duris, Z. Splichal, M. Jurajda, The role of inflammatory response in stroke associated programmed cell death, Curr. Neuropharmacol. 16 (2018) 1365-1374.
    A. Tuttolomondo, D. Di Raimondo, R. di Sciacca, et al., Inflammatory cytokines in acute ischemic stroke, Curr. Pharm. Des. 14 (2008) 3574-3589.
    N.T. Lee, L.K. Ong, P. Gyawali, et al., Role of purinergic signalling in endothelial dysfunction and thrombo-inflammation in ischaemic stroke and cerebral small vessel disease, Biomolecules 11 (2021), 994.
    J.Y. Kim, M. Kawabori, M.A. Yenari, Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets, Curr. Med. Chem. 21 (2014) 2076-2097.
    T. Okada, H. Suzuki, Z.D. Travis, et al., The stroke-induced blood-brain barrier disruption: Current progress of inspection technique, mechanism, and therapeutic target, Curr. Neuropharmacol. 18 (2020) 1187-1212.
    I. Perez-de-Puig, F. Miro-Mur, M. Ferrer-Ferrer, et al., Neutrophil recruitment to the brain in mouse and human ischemic stroke, Acta Neuropathol. 129 (2015) 239-257.
    M.I. Cuartero, I. Ballesteros, A. Moraga, et al., N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARγ agonist rosiglitazone, Stroke 44 (2013) 3498-3508.
    G. Morris, M. Berk, A.F. Carvalho, et al., Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases, Behav. Brain Res. 341 (2018) 154-175.
    Y. Liu, J. Liu, H. Liu, et al., Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging, Ther. Clin. Risk Manag. 12 (2016) 1239-1247.
    Y.L. Chang, S.H. Hung, W. Ling, et al., Association between ischemic stroke and iron-deficiency Anemia: A population-based study, PLoS One 8 (2013), e82952.
    J. Petrova, V. Manolov, V. Vasilev, et al., Ischemic stroke, inflammation, iron overload-connection to a hepcidin, Int. J. Stroke 11 (2016) NP16-NP17.
    Q.Z. Tuo, P. Lei, K.A. Jackman, et al., Tau-mediated iron export prevents ferroptotic damage after ischemic stroke, Mol. Psychiatry 22 (2017) 1520-1530.
    N. Li, X. Wang, C. Sun, et al., Change of intestinal microbiota in cerebral ischemic stroke patients, BMC Microbiol. 19 (2019) 1-8.
    Q. Zhao, C.O. Elson, Adaptive immune education by gut microbiota antigens, Immunology 154 (2018) 28-37.
    A. Bartley, T. Yang, R. Arocha, et al., Increased abundance of lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4+ immune cells, Front. Physiol. 9 (2018), 1593.
    M. Carabotti, A. Scirocco, M.A. Maselli, et al., The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems, Ann. Gastroenterol. 28 (2015) 203-209.
    H. Wang, Y. Wang, Gut microbiota-brain axis, Chin. Med. J. 129 (2016) 2373-2380.
    V. Singh, S. Roth, G. Llovera, et al., Microbiota dysbiosis controls the neuroinflammatory response after stroke, J. Neurosci. 36 (2016) 7428-7440.
    J. Yin, S. Liao, Y. He, et al., Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack, J. Am. Heart Assoc. 4 (2015), e002699.
    Y. Chen, J. Liang, F. Ouyang, et al., Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in Cynomolgus monkeys, Front. Neurol. 10 (2019), 661.
    K. Machiels, M. Joossens, J. Sabino, et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitziidefines dysbiosis in patients with ulcerative colitis, Gut 63 (2014) 1275-1283.
    U. Gophna, T. Konikoff, H.B. Nielsen, Oscillospira and related bacteria - From metagenomic species to metabolic features, Environ. Microbiol. 19 (2017) 835-841.
    M.W. Bourassa, I. Alim, S.J. Bultman, et al., Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett. 625 (2016) 56-63.
    F. Pan, L. Zhang, M. Li, et al., Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice, Microbiome 6 (2018), 54.
    V. Chesnokova, R.N. Pechnick, K. Wawrowsky, Chronic peripheral inflammation, hippocampal neurogenesis, and behavior, Brain Behav. Immun. 58 (2016) 1-8.
    A. Kiryk, R. Pluta, I. Figiel, et al., Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury, Behav. Brain Res. 219 (2011) 1-7.
    G.C. Medeiros, D. Roy, N. Kontos, et al., Post-stroke depression: A 2020 updated review, Gen. Hosp. Psychiatry 66 (2020) 70-80.
    L. Radenovic, M. Nenadic, M. Ulamek-Koziol, et al., Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival, Aging 12 (2020) 12251-12267.
    S.M. Houten, Metabolomics: Unraveling the chemical individuality of common human diseases, Ann. Med. 41 (2009) 402-407.
    D.S. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine, Nat. Rev. Drug Discov. 15 (2016) 473-484.
    D.S. Wishart, Y.D. Feunang, A. Marcu, et al., HMDB 4.0: The human metabolome database for 2018, Nucleic Acids Res 46 (2018) D608-D617.
    S.H. Shah, W.E. Kraus, C.B. Newgard, Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: Form and function, Circulation 126 (2012) 1110-1120.
    R. Zhang, J. Meng, X. Wang, et al., Metabolomics of ischemic stroke: Insights into risk prediction and mechanisms, Metab. Brain Dis. 37 (2022) 2163-2180.
    W. Guo, Y. Wang, M. Fan, et al., Integrating metabolomics and network pharmacology to explore the protective effect of gross saponins of Tribulus terrestris L. fruit against ischemic stroke in rat, J. Ethnopharmacol. 263 (2020), 113202.
    L. Wu, C. Chen, Y. Li, et al., UPLC-Q-TOF/MS-based serum metabolomics reveals the anti-ischemic stroke mechanism of nuciferine in MCAO rats, ACS Omega 5 (2020) 33433-33444.
    Y. Wang, H. Zhao, Y. Liu, et al., GC-MS-based metabolomics to reveal the protective effect of gross saponins of Tribulus terrestris fruit against ischemic stroke in rat, Molecules 24 (2019), 793.
    L. Luo, J. Kang, Q. He, et al., A NMR-based metabonomics approach to determine protective effect of a combination of multiple components derived from Naodesheng on ischemic stroke rats, Molecules 24 (2019), 1831.
    J.Y. Jung, H.S. Lee, D.G. Kang, et al., 1H-NMR-based metabolomics study of cerebral infarction, Stroke 42 (2011) 1282-1288.
    Z. Jiang, J. Sun, Q. Liang, et al., A metabonomic approach applied to predict patients with cerebral infarction, Talanta 84 (2011) 298-304.
    W.T. Kimberly, Y. Wang, L. Pham, et al., Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke, Stroke 44 (2013) 1389-1395.
    M. Liu, K. Zhou, H. Li, et al., Potential of serum metabolites for diagnosing post-stroke cognitive impairment, Mol. BioSyst. 11 (2015) 3287-3296.
    X. Ding, R. Liu, W. Li, et al., A metabonomic investigation on the biochemical perturbation in post-stroke patients with depressive disorder (PSD), Metab. Brain Dis. 31 (2016) 279-287.
    W. Zhang, X. Zhang, A novel urinary metabolite signature for non-invasive post-stroke depression diagnosis, Cell Biochem. Biophys. 72 (2015) 661-667.
    Z. Hu, Z. Zhu, Y. Cao, et al., Rapid and sensitive differentiating ischemic and hemorrhagic strokes by dried blood spot based direct injection mass spectrometry metabolomics analysis, J. Clin. Lab. Anal. 30 (2016) 823-830.
    M. Ruiz-Canela, E. Toledo, C.B. Clish, et al., Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial, Clin. Chem. 62 (2016) 582-592.
    J. Xiao, J. Zhang, D. Sun, et al., Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis, Neuropsychiatr. Dis. Treat. 12 (2016) 1919-1925.
    M. Guasch-Ferre, Y. Zheng, M. Ruiz-Canela, et al., Plasma acylcarnitines and risk of cardiovascular disease: Effect of Mediterranean diet interventions1, Am. J. Clin. Nutr. 103 (2016) 1408-1416.
    Y. Zheng, F.B. Hu, M. Ruiz-Canela, et al., Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) trial, J. Am. Heart Assoc. 5 (2016) e003755.
    D.D. Wang, E. Toledo, A. Hruby, et al., Correction to: Plasma ceramides, Mediterranean diet, and incident cardiovascular disease in the PREDIMED trial (prevencion con dieta mediterranea), Circulation 140 (2019): 2028-2040.
    L. Yang, P. Lv, W. Ai, et al., Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry, Anal. Bioanal. Chem. 409 (2017) 3211-3222.
    Y. Lee, A. Khan, S. Hong, et al., A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: A retrospective cohort study, Mol. BioSyst. 13 (2017) 1109-1120.
    P. Liu, R. Li, A.A. Antonov, et al., Discovery of metabolite biomarkers for acute ischemic stroke progression, J. Proteome Res. 16 (2017) 773-779.
    D.B. Kell, Systems biology, metabolic modelling and metabolomics in drug discovery and development, Drug Discov. Today 11 (2006) 1085-1092.
    H. Cao, A. Zhang, H. Zhang, et al., The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine, Phytother. Res. 29 (2015) 159-166.
    R. Verpoorte, D. Crommelin, M. Danhof, et al., Commentary: “a systems view on the future of medicine: Inspiration from Chinese medicine?”, J. Ethnopharmacol. 121 (2009) 479-481.
    S. Ahmad, N.M. Elsherbiny, R. Haque, et al., Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke, NeuroToxicology 45 (2014) 100-110.
    J. Wang, S.C. Bondy, L. Zhou, et al., Protective effect of Tanshinone IIA against infarct size and increased HMGB1, NFκB, GFAP and apoptosis consequent to transient middle cerebral artery occlusion, Neurochem. Res. 39 (2014) 295-304.
    M. Chien, C.H. Chuang, C.M. Chern, et al., Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice, Free. Radic. Biol. Med. 99 (2016) 508-519.
    S. Xu, A. Zhong, H. Ma, et al., Neuroprotective effect of salvianolic acid B against cerebral ischemic injury in rats via the CD40/NF-κB pathway associated with suppression of platelets activation and neuroinflammation, Brain Res. 1661 (2017) 37-48.
    B.P. Gaire, O.W. Kwon, S.H. Park, et al., Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia, PLoS One 10 (2015), e0120203.
    X. Xue, X. Qu, Y. Yang, et al., Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation, Biochem. Biophys. Res. Commun. 403 (2010) 398-404.
    Y. Zhang, P. Zhang, Y. Liu, Neuroprotective effect of WYY026B on cerebral ischemia/reperfusion injury in rodents through activation of Nrf2/HO-1 pathway, SSRN Electron. J. (2022): 639-898.
    Y. Gao, X. Xu, S. Chang, et al., Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction, Toxicol. Appl. Pharmacol. 289 (2015) 142-154.
    B. Xu, X. He, Y. Sui, et al., Ginkgetin aglycone attenuates neuroinflammation and neuronal injury in the rats with ischemic stroke by modulating STAT3/JAK2/SIRT1, Folia Neuropathol. 57 (2019) 16-23.
    J. Feng, X. Chen, S. Lu, et al., Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation, Mol. Neurobiol. 55 (2018) 9029-9042.
    Z. Wen, W. Hou, W. Wu, et al., 6’-O-galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress via PI3K/akt/Nrf2 activation, Oxid. Med. Cell. Longev. 2018 (2018) 1-14.
    C. Ke, C. Pan, Y. Zhang, et al., Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: A systematic review, Metabolomics 15 (2019), 152.
    X. Fu, J. Wang, S. Liao, et al., 1H NMR-based metabolomics reveals refined-Huang-Lian-Jie-du-decoction (BBG) as a potential ischemic stroke treatment drug with efficacy and a favorable therapeutic window, Front. Pharmacol. 10 (2019), 337.
    Y. Qi, Q. Zhang, H. Zhu, Huang-Lian Jie-Du Decoction: A review on phytochemical, pharmacological and pharmacokinetic investigations, Chin. Med. 14 (2019) 1-22.
    Y.S. Hwang, C.Y. Shin, Y. Huh, et al., Hwangryun-Hae-Dok-Tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats, Life Sci. 71 (2002) 2105-2117.
    P. Wang, J. Wang, C. Zhang, et al., Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway, J. Ethnopharmacol. 149 (2013) 270-280.
    B. Zhu, H. Cao, L. Sun, et al., Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du Decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum, J. Ethnopharmacol. 216 (2018) 147-156.
    Q. Zhang, J. Wang, S. Liao, et al., Optimization of Huang-Lian-Jie-du-decoction for ischemic stroke treatment and mechanistic study by metabolomic profiling and network analysis, Front. Pharmacol. 8 (2017), 165.
    Q. Zhang, J. Wang, C. Zhang, et al., The components of Huang-Lian-Jie-Du-Decoction act synergistically to exert protective effects in a rat ischemic stroke model, Oncotarget 7 (2016) 80872-80887.
    Q. Zhang, X. Fu, J. Wang, et al., Treatment effects of ischemic stroke by berberine, baicalin, and jasminoidin from Huang-Lian-Jie-du-decoction (HLJDD) explored by an integrated metabolomics approach, Oxid. Med. Cell. Longev. 2017 (2017) 1-20.
    Y. Guo, S. Yan, L. Xu, et al., Use of Angong Niuhuang in treating central nervous system diseases and related research, Evid. Based Complementary. Altern. Med. 2014 (2014), 346918.
    Y. Luo, Angongniuhuang pill treatment of acute stroke clinical observation of 64 cases, Chin. J. Ethnomed. Ethnopharmacy 10 (2009) 45-46.
    Z. Wei, Therapeutic effects of Angongniuhuang pill on 34 patients with cerebral stroke, Hebei J. Tradit. Chin. Med. 27 (2005) 13-14.
    B. Tsoi, X. Chen, C. Gao, et al., Neuroprotective effects and hepatorenal toxicity of Angong Niuhuang Wan against ischemia-reperfusion brain injury in rats, Front. Pharmacol. 10 (2019), 593.
    F. Xia, A. Li, Y. Chai, et al., UPLC/Q-TOFMS-based metabolomics approach to reveal the protective role of other herbs in an-Gong-Niu-Huang Wan against the hepatorenal toxicity of cinnabar and realgar, Front. Pharmacol. 9 (2018), 618.
    Y. Zhang, X. Liu, J. Long, et al., Exploring active compounds and mechanisms of Angong Niuhuang Wan on ischemic stroke based on network pharmacology and molecular docking, Evid. Based Complementary Altern. Med. 2022 (2022) 1-13.
    L. Zhang, X. Cheng, R. Chen, et al., Protective effect of effective composite of Chinese medicine prescription Naodesheng (脑得生) against focal cerebral ischemia in rats, Chin. J. Integr. Med. 15 (2009) 377-383.
    L. Luo, L. Zhen, Y. Xu, et al., 1H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats, J. Ethnopharmacol. 186 (2016) 257-269.
    L. Luo, S. Wu, X. Zhu, et al., The profiling and identification of the absorbed constituents and metabolites of Naoshuantong capsule in mice biofluids and brain by ultra- fast liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry, J. Chromatogr. B 1129 (2019), 121791.
    Y. Gu, P. Huang, T. Cheng, et al., A multiomics and network pharmacological study reveals the neuroprotective efficacy of Fu-Fang-Dan-Zhi Tablets against glutamate-induced oxidative cell death, Comput. Biol. Med. 148 (2022), 105873.
    J. Liu, L. Yang, Y. Niu, et al., Potential therapeutic effects of mi-Jian-Chang-Pu decoction on neurochemical and metabolic changes of cerebral ischemia-reperfusion injury in rats, Oxid. Med. Cell. Longev. 2022 (2022), 7319563.
    P. Giraudeau, NMR-based metabolomics and fluxomics: Developments and future prospects, Analyst 145 (2020) 2457-2472.
    D.J. Williamson, G.L. Burn, S. Simoncelli, et al., Machine learning for cluster analysis of localization microscopy data, Nat. Commun. 11 (2020), 1493.
    R.S.G. Sealfon, L.H. Mariani, M. Kretzler, et al., Machine learning, the kidney, and genotype-phenotype analysis, Kidney Int. 97 (2020) 1141-1149.
    B. Curry, D.E. Rumelhart, MSnet: A neural network which classifies mass spectra, Tetrahedron Comput. Methodol. 3 (1990) 213-237.
    D.A. Cirovic, Feed-forward artificial neural networks: Applications to spectroscopy, Trac Trends Anal. Chem. 16 (1997) 148-155.
    K.M. Mendez, D.I. Broadhurst, S.N. Reinke, The application of artificial neural networks in metabolomics: A historical perspective, Metabolomics 15 (2019), 142.
    Y. Truong, X. Lin, C. Beecher, Learning a complex metabolomic dataset using random forests and support vector machines, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. August 22 - 25, 2004, Seattle, WA, USA. New York: ACM, (2004) 835-840.
    M.P.S. Brown, W.N. Grundy, D. Lin, et al., Knowledge-based analysis of microarray gene expression data by using support vector machines, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 262-267.
    E. Saccenti, H.C.J. Hoefsloot, A.K. Smilde, et al., Reflections on univariate and multivariate analysis of metabolomics data, Metabolomics 10 (2014) 361-374.
    W.G. Touw, J.R. Bayjanov, L. Overmars, et al., Data mining in the Life Sciences with Random Forest: A walk in the park or lost in the jungle? Brief. Bioinform. 14 (2013) 315-326.
    R.G. Brereton, G.R. Lloyd, Support Vector Machines for classification and regression, Analyst 135 (2010) 230-267.
    S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Brief. Bioinform. 18 (2017) 851-869.
    I.T. Jolliffe, J. Cadima, Principal component analysis: A review and recent developments, Phil. Trans. R. Soc. A. 374 (2016), 20150202.
    G.J. McLachlan, Cluster analysis and related techniques in medical research, Stat. Meth. Med. Res. 1 (1992) 27-48.
    A. Au, Metabolomics and lipidomics of ischemic stroke, Adv. Clin. Chem. 85 (2018) 31-69.
    T.H. Shin, H.A. Kim, J.Y. Jung, et al., Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever, Metabolomics 14 (2018), 14.
    K. Ben Salem, A. Ben Abdelaziz, Principal component analysis (PCA), Tunis. Med. 99 (2021) 383-389.
    G. Ivosev, L. Burton, R. Bonner, Dimensionality reduction and visualization in principal component analysis, Anal. Chem. 80 (2008) 4933-4944.
    J. Bartel, J. Krumsiek, F.J. Theis, Statistical methods for the analysis of high-throughput metabolomics data, Comput. Struct. Biotechnol. J. 4 (2013), e201301009.
    J.M. Fonville, S.E. Richards, R.H. Barton, et al., The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping, J. Chemom. 24 (2010) 636-649.
    J. Trygg, S. Wold, Orthogonal projections to latent structures (O-PLS), J. Chemom. 16 (2002) 119-128.
    M. Bylesjo, M. Rantalainen, O. Cloarec, et al., OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification, J. Chemom. 20 (2006) 341-351.
    T. Wang, K. Shao, Q. Chu, et al., Automics: An integrated platform for NMR-based metabonomics spectral processing and data analysis, BMC Bioinform. 10 (2009), 83.
    M. Jacob, A.L. Lopata, M. Dasouki, et al., Metabolomics toward personalized medicine, Mass Spectrom. Rev. 38 (2019) 221-238.
    J. Xia, D.I. Broadhurst, M. Wilson, et al., Translational biomarker discovery in clinical metabolomics: An introductory tutorial, Metabolomics 9 (2013) 280-299.
    G. la Marca, Mass spectrometry in clinical chemistry: The case of newborn screening, J. Pharm. Biomed. Anal. 101 (2014) 174-182.
    R. Kaddurah-Daouk, R. Weinshilboum, P.R. Network, Metabolomic signatures for drug response phenotypes: Pharmacometabolomics enables precision medicine, Clin. Pharmacol. Ther. 98 (2015) 71-75.
    B.C. Sallustio, LC-MS/MS for immunosuppressant therapeutic drug monitoring, Bioanalysis 2 (2010) 1141-1153.
    D.J.A.R. Moes, R.R. Press, J.W. de Fijter, et al., Liquid chromatography-tandem mass spectrometry outperforms fluorescence polarization immunoassay in monitoring everolimus therapy in renal transplantation, Ther. Drug Monit. 32 (2010) 413-419.
    N.K. Zgheib, R.F. Frye, T.S. Tracy, et al., Validation of incorporating flurbiprofen into the Pittsburgh cocktail, Clin. Pharmacol. Ther. 80 (2006) 257-263.
    K. Suhre, S.Y. Shin, A.K. Petersen, et al., Human metabolic individuality in biomedical and pharmaceutical research, Nature 477 (2011) 54-60.
    S.Y. Shin, E.B. Fauman, A.K. Petersen, et al., An atlas of genetic influences on human blood metabolites, Nat. Genet. 46 (2014) 543-550.
    R. Zenobi, Single-cell metabolomics: Analytical and biological perspectives, Science 342 (2013), e1243259.
    B.B. Misra, S.M. Assmann, S. Chen, Plant single-cell and single-cell-type metabolomics, Trends Plant Sci. 19 (2014) 637-646.
    S.S. Rubakhin, E.J. Lanni, J.V. Sweedler, Progress toward single cell metabolomics, Curr. Opin. Biotechnol. 24 (2013) 95-104.
    A. Oikawa, K. Saito, Metabolite analyses of single cells, Plant J. 70 (2012) 30-38.
    F.R. Pinu, D.J. Beale, A.M. Paten, et al., Systems biology and multi-omics integration: Viewpoints from the metabolomics research community, Metabolites 9 (2019), 76.
    X. Luo, L. Li, Metabolomics of small numbers of cells: Metabolomic profiling of 100, 1000, and 10000 human breast cancer cells, Anal. Chem. 89 (2017) 11664-11671.
    T. Huang, M. Armbruster, R. Lee, et al., Metabolomic analysis of mammalian cells and human tissue through one-pot two stage derivatizations using sheathless capillary electrophoresis-electrospray ionization-mass spectrometry, J. Chromatogr. A 1567 (2018) 219-225.
    Z. Pan, D. Raftery, Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics, Anal. Bioanal. Chem. 387 (2007) 525-527.
    A.Svatos, Single-cell metabolomics comes of age: New developments in mass spectrometry profiling and imaging, Anal. Chem. 83 (2011) 5037-5044.
    D. Wang, S. Bodovitz, Single cell analysis: The new frontier in ‘omics’, Trends Biotechnol. 28 (2010) 281-290.
    Y. Li, J.H. Jang, C. Wang, et al., Microfluidics cell loading-dock system: Ordered cellular array for dynamic lymphocyte-communication study, Adv. Biosys. 1 (2017), 1700085.
    Y. Li, J.D. Motschman, S.T. Kelly, et al., Injection molded microfluidics for establishing high-density single cell arrays in an open hydrogel format, Anal. Chem. 92 (2020) 2794-2801.
    X. Feng, B. Liu, J. Li, et al., Advances in coupling microfluidic chips to mass spectrometry, Mass Spectrom. Rev. 34 (2015) 535-557.
    S. Gavasso, S.E. Gullaksen, J. Skavland, et al., Single-cell proteomics: Potential implications for cancer diagnostics, Expert Rev. Mol. Diagn. 16 (2016) 579-589.
    A. Gross, J. Schoendube, S. Zimmermann, et al., Technologies for single-cell isolation, Int. J. Mol. Sci. 16 (2015) 16897-16919.
    M. Fessenden, Metabolomics: Small molecules, single cells, Nature 540 (2016) 153-155.
    L. Zhang, A. Vertes, Single-cell mass spectrometry approaches to explore cellular heterogeneity, Angew. Chem. Int. Ed. 57 (2018) 4466-4477.
    K.D. Duncan, J. Fyrestam, I. Lanekoff, Advances in mass spectrometry based single-cell metabolomics, Analyst 144 (2019) 782-793.
    C. Muschet, G. Moller, C. Prehn, et al., Removing the bottlenecks of cell culture metabolomics: Fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method, Metabolomics 12 (2016), 151.
    L. Zhang, A. Vertes, Energy charge, redox state, and metabolite turnover in single human hepatocytes revealed by capillary microsampling mass spectrometry, Anal. Chem. 87 (2015) 10397-10405.
    M.K. Passarelli, C.F. Newman, P.S. Marshall, et al., Single-cell analysis: Visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging, Anal. Chem. 87 (2015) 6696-6702.
    A. Amantonico, P.L. Urban, S.R. Fagerer, et al., Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms, Anal. Chem. 82 (2010) 7394-7400.
    N. Pan, W. Rao, N.R. Kothapalli, et al., The single-probe: A miniaturized multifunctional device for single cell mass spectrometry analysis, Anal. Chem. 86 (2014) 9376-9380.
    A.M. Kleinfeld, J.P. Kampf, C. Lechene, Transport of 13C-oleate in adipocytes measured using multi imaging mass spectrometry, J. Am. Soc. Mass Spectrom. 15 (2004) 1572-1580.
    N.J. Schoffelen, W. Mohr, T.G. Ferdelman, et al., Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth, Sci. Rep. 8 (2018), 17182.
    H. Li, X. Hua, Y. Long, Graphene quantum dots enhanced ToF-SIMS for single-cell imaging, Anal. Bioanal. Chem. 411 (2019) 4025-4030.
    M.E. Duenas, J.J. Essner, Y.J. Lee, 3D MALDI mass spectrometry imaging of a single cell: Spatial mapping of lipids in the embryonic development of zebrafish, Sci. Rep. 7 (2017), 14946.
    B. Yang, N.H. Patterson, T. Tsui, et al., Single-cell mass spectrometry reveals changes in lipid and metabolite expression in RAW 264.7 cells upon lipopolysaccharide stimulation, J. Am. Soc. Mass Spectrom. 29 (2018) 1012-1020.
    T.A. Zimmerman, E.B. Monroe, K.R. Tucker, et al., Chapter 13 imaging of cells and tissues with mass spectrometry. Methods in Cell Biology. Amsterdam: Elsevier, (2008) 361-390.
    B. Shrestha, A. Vertes, in situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry, Anal. Chem. 81 (2009) 8265-8271.
    R. Liu, N. Pan, Y. Zhu, et al., T-probe: An integrated microscale device for online in situ single cell analysis and metabolic profiling using mass spectrometry, Anal. Chem. 90 (2018) 11078-11085.
    Q. Huang, S. Mao, M. Khan, et al., Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry, Chem. Commun. 54 (2018) 2595-2598.
    E.K. Neumann, J.F. Ellis, A.E. Triplett, et al., Lipid analysis of 30 000 individual rodent cerebellar cells using high-resolution mass spectrometry, Anal. Chem. 91 (2019) 7871-7878.
    M. Qi, M.C. Philip, N. Yang, et al., Single cell neurometabolomics, ACS Chem. Neurosci. 9 (2018) 40-50.
    I. Lanekoff, V.V. Sharma, C. Marques, Single-cell metabolomics: Where are we and where are we going? Curr. Opin. Biotechnol. 75 (2022), 102693.
    Y. Fangma, H. Zhou, C. Shao, et al., Hydroxysafflor yellow A and anhydrosafflor yellow B protect against cerebral ischemia/reperfusion injury by attenuating oxidative stress and apoptosis via the silent information regulator 1 signaling pathway, Front. Pharmacol. 12 (2021), 739864.
    M.J. Taylor, J.K. Lukowski, C.R. Anderton, Spatially resolved mass spectrometry at the single cell: Recent innovations in proteomics and metabolomics, J. Am. Soc. Mass Spectrom. 32 (2021) 872-894.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (296) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return