Citation: | Sarfraz Ahmad, Muhammad Usman Mirza, John F. Trant. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study[J]. Journal of Pharmaceutical Analysis, 2023, 13(5): 523-534. doi: 10.1016/j.jpha.2023.04.008 |
B.J. Bruno, G.D. Miller, C.S. Lim, Basics and recent advances in peptide and protein drug delivery, Ther. Deliv. 4 (2013) 1443-1467.
|
U. Anand, A. Bandyopadhyay, N.K. Jha, et al., Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate, Biofactors 9 (2023) 251-269.
|
M. Muttenthaler, G.F. King, D.J. Adams, et al., Trends in peptide drug discovery, Nat. Rev. Drug Discov. 20 (2021) 309-325.
|
E. Petsalaki, R.B. Russell, Peptide-mediated interactions in biological systems: New discoveries and applications, Curr. Opin. Biotechnol. 19 (2008) 344-350.
|
L. Wang, N. Wang, W. Zhang, et al., Therapeutic peptides: Current applications and future directions, Signal Transduct. Target Ther. 7 (2022), 48.
|
S.L. Johnston, Biologic therapies: What and when?, J. Clin. Pathol. 60 (2007) 8-17.
|
W.-H. Boehncke, N.C. Brembilla, Immunogenicity of biologic therapies: Couses and consequences, Expert Rev. Clin. Immunol. 14 (2018) 513-523.
|
F.D. Makurvet, Biologics vs. small molecules: Drug costs and patient access, Med. Drug Discov. 9 (2021),100075.
|
N. Skalko-Basnet, Biologics: The role of delivery systems in improved therapy, Biol. Targets Ther. 8 (2014) 107-114.
|
M.C. Smith, J.E. Gestwicki, Features of protein-protein interactions that translate into potent inhibitors: Topology, surface area and affinity, Expert Rev. Mol. Med. 14 (2012), e16.
|
M.G. de Lomana, F. Svensson, A. Volkamer, et al., Consideration of predicted small-molecule metabolites in computational toxicology, Digit. Discov. 1 (2022) 158-172.
|
H. Waldmann, Human monoclonal antibodies: The residual challenge of antibody immunogenicity, Methods Mol. Biol. (2014) 1-8.
|
K. Fosgerau, T. Hoffmann, Peptide therapeutics: Current status and future directions, Drug Discov. Today 20 (2015) 122-128.
|
M. Hale, G. Oyler, S. Swaminathan, et al., Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity, J. Biol. Chem. 286 (2011) 1802-1811.
|
P. Vlieghe, V. Lisowski, J. Martinez, et al., Synthetic therapeutic peptides: Science and market, Drug Discov. Today 15 (2010) 40-56.
|
D.J. Craik, D.P. Fairlie, S. Liras, et al., The future of peptide-based drugs, Chem. Biol. Drug Des. 81 (2013) 136-147.
|
A.A. Kaspar, J.M. Reichert, Future directions for peptide therapeutics development, Drug Discov. Today 18 (2013) 807-817.
|
J. Caballero, The latest automated docking technologies for novel drug discovery, Expert Opin. Drug Discov. 16 (2021) 625-645.
|
F. Stanzione, I. Giangreco, J.C. Cole, Use of molecular docking computational tools in drug discovery, Prog. Med. Chem. 60 (2021) 273-343.
|
G. Weng, J. Gao, Z. Wang, et al., Comprehensive evaluation of fourteen docking programs on protein-peptide complexes, J. Chem. Theory Comput. 16 (2020) 3959-3969.
|
A.S. Hauser, B.r. Windshügel, LEADS-PEP: A benchmark data set for assessment of peptide docking performance, J. Chem. Inf. Model. 56 (2016) 188-200.
|
O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, et al., Molecular dynamics simulations in drug discovery and pharmaceutical development, Processes 9 (2020), 71.
|
K. Steuten, H. Kim, J.C. Widen, et al., Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19, ACS Infect. Dis. 7 (2021) 1457-1468.
|
K. Anand, J. Ziebuhr, P. Wadhwani, et al., Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs, Science 300 (2003) 1763-1767.
|
Y. Zhao, C. Fang, Q. Zhang, et al., Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332, Prot. Cell 13 (2022) 689-693.
|
J. Lee, L.J. Worrall, M. Vuckovic, et al., Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site, Nat. Commun. 11 (2020), 5877.
|
L. Zhang, D. Lin, X. Sun, et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science 368 (2020) 409-412.
|
M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase, J. Pharm. Anal. 10 (2020) 320-328.
|
L. Zhang, D. Lin, Y. Kusov, et al., α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020) 4562-4578.
|
S. Ahmad, M.U. Mirza, Y.K. Lee, et al., Fragment-based in silico design of SARS CoV-2 main protease inhibitors, Chem. Biol. Drug Des. (2021).
|
C. Wu, Y. Liu, Y. Yang, et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766-788.
|
G. Macip, P. Garcia-Segura, J. Mestres-Truyol, et al., Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition, Med. Res. Rev. 42 (2022) 744-769.
|
J. Breidenbach, C. Lemke, T. Pillaiyar, et al., Targeting the main protease of SARS-CoV-2: From the establishment of high throughput screening to the design of tailored inhibitors, Angew. Chem. Int. Ed. Engl. 60 (2021) 10423-10429.
|
T. Pillaiyar, P. Flury, N. Kruger, et al., Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: Enzyme inhibition, structure-activity relationships, antiviral activity, and X-ray structure determination, J. Med. Chem. 65 (2022) 9376-9395.
|
Q. Hu, Y. Xiong, G.-H. Zhu, et al., The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19, MedComm 3 (2022), e151.
|
G. La Monica, A. Bono, A. Lauria, et al., Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure-activity relationship insights and evolution perspectives, J. Med. Chem. 65 (2022) 12500-12534.
|
K. Gao, R. Wang, J. Chen, et al., Perspectives on SARS-CoV-2 main protease inhibitors, J. Med. Chem. 64 (2021) 16922-16955.
|
M. Bzowka, K. Mitusinska, A. Raczynska, et al., Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design, Int. J. Mol. Sci. 21 (2020), 3099.
|
B.-X. Quan, H. Shuai, A.-J. Xia, et al., An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron, Nat. Microbiol. 7 (2022) 716-725.
|
P. Kashyap, V.K. Bhardwaj, M. Chauhan, et al., A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2, Sci. Rep. 12 (2022), 12802.
|
J. Johansen-Leete, S. Ullrich, S.E. Fry, et al., Antiviral cyclic peptides targeting the main protease of SARS-CoV-2, Chem. Sci. 13 (2022) 3826-3836.
|
M.U. Mirza, I. Alanko, M. Vanmeert, et al., The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach, Eur. J. Pharm. Sci. 175 (2022), 106220.
|
E. Anderson, G.D. Veith, D. Weininger, SMILES, A Line Notation and Computerized Interpreter for Chemical Structures, US Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN, 1987.
|
D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity searches, Science 227 (1985) 1435-1441.
|
N.M. O’Boyle, M. Banck, C.A. James, et al., Open Babel: An open chemical toolbox, J. Cheminformatics 3 (2011), 33.
|
G.M. Sastry, M. Adzhigirey, T. Day, et al., Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013) 221-234.
|
K. Roos, C. Wu, W. Damm, et al., OPLS3e: Extending force field coverage for drug-like small molecules, J. Chem. Theory Comput. 15 (2019) 1863-1874.
|
B. Anson, A.K. Ghosh, A. Mesecar, X-ray structure of SARS-CoV-2 main protease bound to GRL-024-20 at 1.45 A, 6XR3, Protein Databank, 2020.
|
M.U. Mirza, A. Saadabadi, M. Vanmeert, et al., Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach, Eur. J. Pharm. Sci. 155 (2020), 105537.
|
J. Li, R. Abel, K. Zhu, et al., The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling, Proteins Struct. Funct. Bioinform. 79 (2011) 2794-2812.
|
G. Jones, P. Willett, R.C. Glen, et al., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol. 267 (1997) 727-748.
|
M.J. Hartshorn, M.L. Verdonk, G. Chessari, et al., Diverse, high-quality test set for the validation of protein-ligand docking performance, J. Med. Chem. 50 (2007) 726-741.
|
P. Agrawal, H. Singh, H.K. Srivastava, et al., Benchmarking of different molecular docking methods for protein-peptide docking, BMC Bioinform. 19 (2019) 105-124.
|
M.F. Sanner, L. Dieguez, S. Forli, et al., Improving docking power for short peptides using random forest, J. Chem. Inf. Model. 61 (2021) 3074-3090.
|
V.D. Prasasty, E.P. Istyastono, Data of small peptides in SMILES and three-dimensional formats for virtual screening campaigns, Data Br. 27 (2019), 104607.
|
T. Panyayai, P. Sangsawad, E. Pacharawongsakda, et al., The potential peptides against angiotensin-I converting enzyme through a virtual tripeptide-constructing library, Comput. Biol. Chem. 77 (2018) 207-213.
|
A. Mollica, G. Zengin, S. Durdagi, et al., Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models, J. Biomol. Struct. Dyn. 37 (2019) 726-740.
|
C. Petrou, Y. Sarigiannis, Peptide synthesis: Methods, trends, and challenges, Pept. Appli. Biomed. Biotech. Bioengin. (2018) 1-21.
|
R. Sarma, K.-Y. Wong, G.C. Lynch, et al., Peptide solubility limits: Backbone and side-chain interactions, J. Phys. Chem. B 122 (2018) 3528-3539.
|
T.G. Kapp, F. Rechenmacher, S. Neubauer, et al., A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins, Sci. Rep. 7 (2017), 39805.
|
R.E. Rocha, E.J. Chaves, P.H. Fischer, et al., A higher flexibility at the SARS-CoV-2 main protease active site compared to SARS-CoV and its potentialities for new inhibitor virtual screening targeting multi-conformers, J. Biomol. Struct. Dyn. 40 (2022) 9214-9234
|
M. Ciemny, M. Kurcinski, K. Kamel, et al., Protein-peptide docking: Opportunities and challenges, Drug Discov. Today 23 (2018) 1530-1537.
|
I. Tubert-Brohman, W. Sherman, M. Repasky, et al., Improved docking of polypeptides with Glide, J. Chem. Inf. Model. 53 (2013) 1689-1699.
|
M. Feher, C.I. Williams, Numerical errors and chaotic behavior in docking simulations, J. Chem. Inf. Model. 52 (2012) 724-738.
|
H. Su, S. Yao, W. Zhao, et al., Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients, Acta Pharmacol. Sin. 41 (2020) 1167-1177.
|
M.T. ul Qamar, M.U. Mirza, J.-M. Song, et al., Probing the structural basis of Citrus phytochrome B using computational modelling and molecular dynamics simulation approaches, J. Mol. Liq. 340 (2021), 116895.
|
J. Zhang, H.I. Pettersson, C. Huitema, et al., Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters, J. Med. Chem. 50 (2007) 1850-1864.
|
S. Yang, S.-J. Chen, M.-F. Hsu, et al., Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor, J. Med. Chem. 49 (2006) 4971-4980.
|
H. Yang, W. Xie, X. Xue, et al., Design of wide-spectrum inhibitors targeting coronavirus main proteases, PLoS Biol. 3 (2005), e324.
|
A.K. Ghosh, K. Xi, V. Grum-Tokars, et al., Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors, Bioorg. Med. Chem. Lett. 17 (2007) 5876-5880.
|
T.-W. Lee, M.M. Cherney, C. Huitema, et al., Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide, J. Mol. Biol. 353 (2005) 1137-1151.
|