Volume 13 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Minhua Huang, Ning Hua, Siyi Zhuang, Qiuyuan Fang, Jiangming Shang, Zhen Wang, Xiaohua Tao, Jianguo Niu, Xiangyao Li, Peilin Yu, Wei Yang. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 745-759. doi: 10.1016/j.jpha.2023.04.004
Citation: Minhua Huang, Ning Hua, Siyi Zhuang, Qiuyuan Fang, Jiangming Shang, Zhen Wang, Xiaohua Tao, Jianguo Niu, Xiangyao Li, Peilin Yu, Wei Yang. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 745-759. doi: 10.1016/j.jpha.2023.04.004

Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics

doi: 10.1016/j.jpha.2023.04.004
Funds:

32071102 to P. Yu), the National Major Special Project on New Drug Innovation of China (Grant No.: 2018ZX09711001-004-005), the key research and development program of Ningxia Hui Autonomous Region (Grant No.: 2019BFH02003), Fundamental Research Funds for the Central Universities of China (Grant No.: 2016QNA7002 to P. Yu), and Zhejiang Provincial Natural Science Foundation (Grant No.: LR16H090001 to W. Yang). We thank J. Chen and Q. Huang from the Core Facilities, Zhejiang University School of Medicine for their technical support.

The work was supported by Technological Innovation 2030-Major Projects of Brain Science and Brain-like Research (Grant No.: 2022ZD0206200), the Natural Science Foundation of China (Grant Nos.: 31872796 and 82030108 to W. Yang

  • Received Date: Dec. 08, 2022
  • Accepted Date: Apr. 06, 2023
  • Rev Recd Date: Apr. 04, 2023
  • Publish Date: Apr. 11, 2023
  • Pathological dry skin is a disturbing and intractable healthcare burden, characterized by epithelial hyperplasia and severe itch. Atopic dermatitis (AD) and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing (scRNA-seq). However, scRNA-seq analysis of the dry skin mouse model (acetone/ether/water (AEW)-treated model) is still lacking. Here, we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell (PBC) state that exclusively expresses transcription factor CUT-like homeobox 1 (Cux1). Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases (CDKs) and cyclins. Clinically, Cux1+ PBCs were increased in patients with psoriasis, suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia. This study presents a systematic knowledge of the transcriptomic changes in a chronic dry skin mouse model, as well as a potential therapeutic target against dry skin-related dermatoses.
  • loading
  • C.S. Moniaga, M. Tominaga, K. Takamori, Mechanisms and Management of Itch in Dry Skin, Acta Derm. Venereol. 100 (2020), adv00024.
    R.J. Tončić, S. Kezić, S.L. Hadžavdić, et al., Skin barrier and dry skin in the mature patient, Clin. Dermatol. 36 (2018) 109-115.
    T. Miyamoto, H. Nojima, T. Shinkado, et al., Itch-associated response induced by experimental dry skin in mice, Jpn. J. Pharmacol. 88 (2002) 285-292.
    B.-W. Wang, M.-L. Tai, K. Zhang, et al., Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice, J. Cosmet. Dermatol. 20 (2021) 647-656.
    W.-J. Lee, W.-S. Shim, Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus, Front. Immunol. 12 (2021), 772941.
    M.V. Valtcheva, V.K. Samineni, J.P. Golden, et al., Enhanced nonpeptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch, J. Pain. 16 (2015) 346-356.
    Y. Zhou, F. Xu, X.-Y. Chen, et al., The epidermal immune microenvironment plays a dominant role in psoriasis development, as revealed by mass cytometry, Cell. Mol. Immunol. 19 (2022) 1400-1413.
    K.A.U. Gonzales, E. Fuchs, Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche, Dev. Cell. 43 (2017) 387-401.
    C. Blanpain, E. Fuchs, Epidermal homeostasis: A balancing act of stem cells in the skin, Nat Rev Mol. Cell Biol. 10 (2009) 207-217.
    J.B. Cheng, A.J. Sedgewick, A.I. Finnegan, et al., Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution, Cell Rep. 25 (2018) 871-883.
    D. Haensel, S.-Q. J, P. Sun, et al., Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics, Cell Rep. 30 (2020) 3932-3947.
    A.L. Ji, A.J. Rubin, K. Thrane, et al., Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma, Cell 182 (2020) 497-514.
    Z.-R. Zou, X. Long, Q. Zhao, et al., A Single-Cell Transcriptomic Atlas of Human Skin Aging, Dev. Cell 56 (2021) 383-397.
    P. Sun, R. Vu, M. Dragan, et al., OVOL1 Regulates Psoriasis-Like Skin Inflammation and Epidermal Hyperplasia, J. Invest. Dermatol. 141 (2021) 1542-1552.
    Y. Hu, Z.-Y. Song, J. Chen, et al., Overexpression of MYB in the Skin Induces Alopecia and Epidermal Hyperplasia, J. Invest. Dermatol. 140 (2020) 1204-1213.
    J. Lindroos, L. Svensson, H. Norsgaard, et al., IL-23-mediated epidermal hyperplasia is dependent on IL-6, J. Invest. Dermatol. 131 (2011) 1110-1118.
    P. Qiao, W. Guo, Y. Ke, et al., Mechanical Stretch Exacerbates Psoriasis by Stimulating Keratinocyte Proliferation and Cytokine Production, J. Invest. Dermatol. 139 (2019) 1470-1479.
    A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420.
    C.S. McGinnis, L.M. Murrow, Z.J. Gartner, DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors, Cell Syst. 8 (2019) 329-337.
    T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive Integration of Single-Cell Data, Cell 177 (2019) 1888-1902.
    I. Tirosh, B. Izar, S.M. Prakadan, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science 352 (2016) 189-196.
    A.S. Venteicher, I. Tirosh, C. Hebert, et al., Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq, Science 355 (2017), eaai8478.
    A. Liberzon, A. Subramanian, R. Pinchback, et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics 27 (2011) 1739-1740.
    G.-C. Yu, L.-G. Wang, Y.-Y. Han, et al., clusterProfiler: An R package for comparing biological themes among gene clusters, Omics. 16 (2012) 284-287.
    C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386.
    V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, et al., Inferring regulatory networks from expression data using tree-based methods, PLoS One 5 (2010), e12776.
    S. Aibar, C.B. González-Blas, T. Moerman, et al., SCENIC: Single-cell regulatory network inference and clustering, Nat. Methods 14 (2017) 1083-1086.
    P. Michl, A.R. Ramjaun, O.E. Pardo, et al., CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness, Cancer Cell 7 (2005) 521-532.
    T. Kawakami, T. Ando, M. Kimura, et al., Mast cells in atopic dermatitis, Curr. Opin. Immunol. 21 (2009) 666-678.
    P.R. Blackburn, Z. Xu, K.E. Tumelty, et al., Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome, Am. J. Hum. Genet. 102 (2018) 696-705.
    J. Schnieder, A. Mamazhakypov, A. Birnhuber, et al., Loss of LRP1 promotes acquisition of contractile-myofibroblast phenotype and release of active TGF-β1 from ECM stores, Matrix Biol. 88 (2020) 69-88.
    Y.-W. Zhang, J.-Q. Hao, J. Zeng, et al., Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes, J. Invest. Dermatol. 138 (2018) 1925-1934.
    C.J. Baños-Hernández, R. Bucala, J. Hernández-Bello, et al., Expression of macrophage migration inhibitory factor and its receptor CD74 in systemic sclerosis, Cent. Eur. J. Immunol. 46 (2021) 375-383.
    Y. Imai, Interleukin-33 in atopic dermatitis, J. Dermatol. Sci. 96 (2019) 2-7.
    W.S.D.S. R. Cannoodt, S. Tavernier, S. Janssens, et al., SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development, bioRxiv. 2016. https://doi.org/10.1101/079509.
    L. Sansregret, A. Nepveu, The multiple roles of CUX1: Insights from mouse models and cell-based assays, Gene 412 (2008) 84-94.
    A. Scialdone, K.N. Natarajan, L.R. Saraiva, et al., Computational assignment of cell-cycle stage from single-cell transcriptome data, Methods 85 (2015) 54-61.
    Y. Gao, X.-Y Yao, Y.-M. Zhai, et al., Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells, Cell Death Dis. 12 (2021), 450.
    Y. Ding, Z.-J. Ouyang, C.-Y. Zhang, et al., Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis, MedComm. 3 (2022), e120.
    C.F. Guerrero-Juarez, P.H. Dedhia, S.Q. Jin, et al., Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds, Nat. Commun. 10 (2019), 650.
    I.M. Leigh, K.A. Pulford, F.C. Ramaekers, et al., Psoriasis: Maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation, Br. J. Dermatol. 113 (1985) 53-64.
    S. Yan, R. Ripamonti, H. Kawabe, et al., NEDD4-1 Is a Key Regulator of Epidermal Homeostasis and Wound Repair, J. Invest. Dermatol. 142 (2022) 1703-1713.
    H. Shen, B.-J. Zeng, C. Wang, et al., MiR-330 inhibits IL-22-induced keratinocyte proliferation through targeting CTNNB1, Biomed. Pharmacother. 91 (2017) 803-811.
    M. Lazarov, Y. Kubo, T. Cai, et al., CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis, Nat. Med. 8 (2002) 1105-1114.
    Y. Nishizawa, J. Uematsu, K. Owaribe, HD4, a 180 kDa bullous pemphigoid antigen, is a major transmembrane glycoprotein of the hemidesmosome, J. Biochem. 113 (1993) 493-501.
    S. Joost, A. Zeisel, T. Jacob, et al., Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity, Cell Syst. 3 (2016) 221-237.
    G.S. Gulati, S.S. Sikandar, D.J. Wesche, et al., Single-cell transcriptional diversity is a hallmark of developmental potential, Science 367 (2020) 405-411.
    N. Ichimasu, Y. Chen, K. Kobayashi, et al., Possible involvement of type 2 cytokines in alloknesis in mouse models of menopause and dry skin, Exp. Dermatol. 30 (2021) 1745-1753.
    N. Zhao, M. Gu, W.-X. Yang, et al., Increased ZAP70 Is Involved in Dry Skin Pruritus in Aged Mice, Biomed. Res. Int. 2016 (2016), 6029538.
    S.-Q. Jin, C.F. Guerrero-Juarez, L.-H. Zhang, et al., Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 12 (2021), 1088.
    J.R. Chan, W. Blumenschein, E. Murphy, et al., IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis, J. Exp. Med. 203 (2006) 2577-2587.
    R.K. Gupta, D.T. Gracias, D.S. Figueroa, et al., TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy, Sci. Immunol. 6 (2021), eabi8823.
    J. Dudeck, J. Kotrba, R. Immler, et al., Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation, Immunity 54 (2021) 468-483.
    E. von Stebut, M. Metz, G. Milon, et al., Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1alpha/beta released from neutrophils recruited by mast cell-derived TNFalpha, Blood 101 (2003) 210-215.
    B.-D. Zhang, K.D. Alysandratos, A. Angelidou, et al., Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: Relevance to atopic dermatitis, J. Allergy Clin. Immunol. 127 (2011) 1522-1531.
    J.R. Gordon, S.J. Galli, Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha, J. Exp. Med. 180 (1994) 2027-2037.
    T.-M. Zhang, L.-T. Yang, Y. Ke, et al., EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation, Cell Death Dis. 11 (2020), 826.
    R. Kunstfeld, S. Hirakawa, Y.K. Hong, et al., Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia, Blood 104 (2004) 1048-1057.
    F. Benhadou, E. Glitzner, A. Brisebarre, et al., Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease, Sci. Adv. 6 (2020), eaax5849.
    M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: A changing paradigm, Nat. Rev. Cancer 9 (2009) 153-166.
    H. Hochegger, S. Takeda, T. Hunt, Cyclin-dependent kinases and cell-cycle transitions: Does one fit all?, Nat. Rev. Mol. Cell Biol. 9 (2008) 910-916.
    P. Michl, J. Downward, CUTL1: A key mediator of TGFbeta-induced tumor invasion, Cell Cycle 5 (2006) 132-134.
    R. Siam, R. Harada, C. Cadieux, et al., Transcriptional activation of the Lats1 tumor suppressor gene in tumors of CUX1 transgenic mice, Mol. Cancer 8 (2009), 60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (338) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return