Citation: | Minhua Huang, Ning Hua, Siyi Zhuang, Qiuyuan Fang, Jiangming Shang, Zhen Wang, Xiaohua Tao, Jianguo Niu, Xiangyao Li, Peilin Yu, Wei Yang. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 745-759. doi: 10.1016/j.jpha.2023.04.004 |
C.S. Moniaga, M. Tominaga, K. Takamori, Mechanisms and Management of Itch in Dry Skin, Acta Derm. Venereol. 100 (2020), adv00024.
|
R.J. Tončić, S. Kezić, S.L. Hadžavdić, et al., Skin barrier and dry skin in the mature patient, Clin. Dermatol. 36 (2018) 109-115.
|
T. Miyamoto, H. Nojima, T. Shinkado, et al., Itch-associated response induced by experimental dry skin in mice, Jpn. J. Pharmacol. 88 (2002) 285-292.
|
B.-W. Wang, M.-L. Tai, K. Zhang, et al., Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice, J. Cosmet. Dermatol. 20 (2021) 647-656.
|
W.-J. Lee, W.-S. Shim, Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus, Front. Immunol. 12 (2021), 772941.
|
M.V. Valtcheva, V.K. Samineni, J.P. Golden, et al., Enhanced nonpeptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch, J. Pain. 16 (2015) 346-356.
|
Y. Zhou, F. Xu, X.-Y. Chen, et al., The epidermal immune microenvironment plays a dominant role in psoriasis development, as revealed by mass cytometry, Cell. Mol. Immunol. 19 (2022) 1400-1413.
|
K.A.U. Gonzales, E. Fuchs, Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche, Dev. Cell. 43 (2017) 387-401.
|
C. Blanpain, E. Fuchs, Epidermal homeostasis: A balancing act of stem cells in the skin, Nat Rev Mol. Cell Biol. 10 (2009) 207-217.
|
J.B. Cheng, A.J. Sedgewick, A.I. Finnegan, et al., Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution, Cell Rep. 25 (2018) 871-883.
|
D. Haensel, S.-Q. J, P. Sun, et al., Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics, Cell Rep. 30 (2020) 3932-3947.
|
A.L. Ji, A.J. Rubin, K. Thrane, et al., Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma, Cell 182 (2020) 497-514.
|
Z.-R. Zou, X. Long, Q. Zhao, et al., A Single-Cell Transcriptomic Atlas of Human Skin Aging, Dev. Cell 56 (2021) 383-397.
|
P. Sun, R. Vu, M. Dragan, et al., OVOL1 Regulates Psoriasis-Like Skin Inflammation and Epidermal Hyperplasia, J. Invest. Dermatol. 141 (2021) 1542-1552.
|
Y. Hu, Z.-Y. Song, J. Chen, et al., Overexpression of MYB in the Skin Induces Alopecia and Epidermal Hyperplasia, J. Invest. Dermatol. 140 (2020) 1204-1213.
|
J. Lindroos, L. Svensson, H. Norsgaard, et al., IL-23-mediated epidermal hyperplasia is dependent on IL-6, J. Invest. Dermatol. 131 (2011) 1110-1118.
|
P. Qiao, W. Guo, Y. Ke, et al., Mechanical Stretch Exacerbates Psoriasis by Stimulating Keratinocyte Proliferation and Cytokine Production, J. Invest. Dermatol. 139 (2019) 1470-1479.
|
A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420.
|
C.S. McGinnis, L.M. Murrow, Z.J. Gartner, DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors, Cell Syst. 8 (2019) 329-337.
|
T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive Integration of Single-Cell Data, Cell 177 (2019) 1888-1902.
|
I. Tirosh, B. Izar, S.M. Prakadan, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science 352 (2016) 189-196.
|
A.S. Venteicher, I. Tirosh, C. Hebert, et al., Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq, Science 355 (2017), eaai8478.
|
A. Liberzon, A. Subramanian, R. Pinchback, et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics 27 (2011) 1739-1740.
|
G.-C. Yu, L.-G. Wang, Y.-Y. Han, et al., clusterProfiler: An R package for comparing biological themes among gene clusters, Omics. 16 (2012) 284-287.
|
C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386.
|
V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, et al., Inferring regulatory networks from expression data using tree-based methods, PLoS One 5 (2010), e12776.
|
S. Aibar, C.B. González-Blas, T. Moerman, et al., SCENIC: Single-cell regulatory network inference and clustering, Nat. Methods 14 (2017) 1083-1086.
|
P. Michl, A.R. Ramjaun, O.E. Pardo, et al., CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness, Cancer Cell 7 (2005) 521-532.
|
T. Kawakami, T. Ando, M. Kimura, et al., Mast cells in atopic dermatitis, Curr. Opin. Immunol. 21 (2009) 666-678.
|
P.R. Blackburn, Z. Xu, K.E. Tumelty, et al., Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome, Am. J. Hum. Genet. 102 (2018) 696-705.
|
J. Schnieder, A. Mamazhakypov, A. Birnhuber, et al., Loss of LRP1 promotes acquisition of contractile-myofibroblast phenotype and release of active TGF-β1 from ECM stores, Matrix Biol. 88 (2020) 69-88.
|
Y.-W. Zhang, J.-Q. Hao, J. Zeng, et al., Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes, J. Invest. Dermatol. 138 (2018) 1925-1934.
|
C.J. Baños-Hernández, R. Bucala, J. Hernández-Bello, et al., Expression of macrophage migration inhibitory factor and its receptor CD74 in systemic sclerosis, Cent. Eur. J. Immunol. 46 (2021) 375-383.
|
Y. Imai, Interleukin-33 in atopic dermatitis, J. Dermatol. Sci. 96 (2019) 2-7.
|
W.S.D.S. R. Cannoodt, S. Tavernier, S. Janssens, et al., SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development, bioRxiv. 2016. https://doi.org/10.1101/079509.
|
L. Sansregret, A. Nepveu, The multiple roles of CUX1: Insights from mouse models and cell-based assays, Gene 412 (2008) 84-94.
|
A. Scialdone, K.N. Natarajan, L.R. Saraiva, et al., Computational assignment of cell-cycle stage from single-cell transcriptome data, Methods 85 (2015) 54-61.
|
Y. Gao, X.-Y Yao, Y.-M. Zhai, et al., Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells, Cell Death Dis. 12 (2021), 450.
|
Y. Ding, Z.-J. Ouyang, C.-Y. Zhang, et al., Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis, MedComm. 3 (2022), e120.
|
C.F. Guerrero-Juarez, P.H. Dedhia, S.Q. Jin, et al., Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds, Nat. Commun. 10 (2019), 650.
|
I.M. Leigh, K.A. Pulford, F.C. Ramaekers, et al., Psoriasis: Maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation, Br. J. Dermatol. 113 (1985) 53-64.
|
S. Yan, R. Ripamonti, H. Kawabe, et al., NEDD4-1 Is a Key Regulator of Epidermal Homeostasis and Wound Repair, J. Invest. Dermatol. 142 (2022) 1703-1713.
|
H. Shen, B.-J. Zeng, C. Wang, et al., MiR-330 inhibits IL-22-induced keratinocyte proliferation through targeting CTNNB1, Biomed. Pharmacother. 91 (2017) 803-811.
|
M. Lazarov, Y. Kubo, T. Cai, et al., CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis, Nat. Med. 8 (2002) 1105-1114.
|
Y. Nishizawa, J. Uematsu, K. Owaribe, HD4, a 180 kDa bullous pemphigoid antigen, is a major transmembrane glycoprotein of the hemidesmosome, J. Biochem. 113 (1993) 493-501.
|
S. Joost, A. Zeisel, T. Jacob, et al., Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity, Cell Syst. 3 (2016) 221-237.
|
G.S. Gulati, S.S. Sikandar, D.J. Wesche, et al., Single-cell transcriptional diversity is a hallmark of developmental potential, Science 367 (2020) 405-411.
|
N. Ichimasu, Y. Chen, K. Kobayashi, et al., Possible involvement of type 2 cytokines in alloknesis in mouse models of menopause and dry skin, Exp. Dermatol. 30 (2021) 1745-1753.
|
N. Zhao, M. Gu, W.-X. Yang, et al., Increased ZAP70 Is Involved in Dry Skin Pruritus in Aged Mice, Biomed. Res. Int. 2016 (2016), 6029538.
|
S.-Q. Jin, C.F. Guerrero-Juarez, L.-H. Zhang, et al., Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 12 (2021), 1088.
|
J.R. Chan, W. Blumenschein, E. Murphy, et al., IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis, J. Exp. Med. 203 (2006) 2577-2587.
|
R.K. Gupta, D.T. Gracias, D.S. Figueroa, et al., TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy, Sci. Immunol. 6 (2021), eabi8823.
|
J. Dudeck, J. Kotrba, R. Immler, et al., Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation, Immunity 54 (2021) 468-483.
|
E. von Stebut, M. Metz, G. Milon, et al., Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1alpha/beta released from neutrophils recruited by mast cell-derived TNFalpha, Blood 101 (2003) 210-215.
|
B.-D. Zhang, K.D. Alysandratos, A. Angelidou, et al., Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: Relevance to atopic dermatitis, J. Allergy Clin. Immunol. 127 (2011) 1522-1531.
|
J.R. Gordon, S.J. Galli, Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha, J. Exp. Med. 180 (1994) 2027-2037.
|
T.-M. Zhang, L.-T. Yang, Y. Ke, et al., EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation, Cell Death Dis. 11 (2020), 826.
|
R. Kunstfeld, S. Hirakawa, Y.K. Hong, et al., Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia, Blood 104 (2004) 1048-1057.
|
F. Benhadou, E. Glitzner, A. Brisebarre, et al., Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease, Sci. Adv. 6 (2020), eaax5849.
|
M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: A changing paradigm, Nat. Rev. Cancer 9 (2009) 153-166.
|
H. Hochegger, S. Takeda, T. Hunt, Cyclin-dependent kinases and cell-cycle transitions: Does one fit all?, Nat. Rev. Mol. Cell Biol. 9 (2008) 910-916.
|
P. Michl, J. Downward, CUTL1: A key mediator of TGFbeta-induced tumor invasion, Cell Cycle 5 (2006) 132-134.
|
R. Siam, R. Harada, C. Cadieux, et al., Transcriptional activation of the Lats1 tumor suppressor gene in tumors of CUX1 transgenic mice, Mol. Cancer 8 (2009), 60.
|