Volume 13 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Yijia Fangma, Mengting Liu, Jie Liao, Zhong Chen, Yanrong Zheng. Dissecting the brain with spatially resolved multi-omics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 694-710. doi: 10.1016/j.jpha.2023.04.003
Citation: Yijia Fangma, Mengting Liu, Jie Liao, Zhong Chen, Yanrong Zheng. Dissecting the brain with spatially resolved multi-omics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 694-710. doi: 10.1016/j.jpha.2023.04.003

Dissecting the brain with spatially resolved multi-omics

doi: 10.1016/j.jpha.2023.04.003
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: U21A20418, 82003727, and 82273903), and Zhejiang Provincial Natural Science Foundation, China (Grant No.: LQ21H310002).

  • Received Date: Oct. 31, 2022
  • Accepted Date: Apr. 06, 2023
  • Rev Recd Date: Apr. 04, 2023
  • Publish Date: Apr. 10, 2023
  • Recent studies have highlighted spatially resolved multi-omics technologies, including spatial genomics, transcriptomics, proteomics, and metabolomics, as powerful tools to decipher the spatial heterogeneity of the brain. Here, we focus on two major approaches in spatial transcriptomics (next-generation sequencing-based technologies and image-based technologies), and mass spectrometry imaging technologies used in spatial proteomics and spatial metabolomics. Furthermore, we discuss their applications in neuroscience, including building the brain atlas, uncovering gene expression patterns of neurons for special behaviors, deciphering the molecular basis of neuronal communication, and providing a more comprehensive explanation of the molecular mechanisms underlying central nervous system disorders. However, further efforts are still needed toward the integrative application of multi-omics technologies, including the real-time spatial multi-omics analysis in living cells, the detailed gene profile in a whole-brain view, and the combination of functional verification.
  • loading
  • J. Liao, X. Lu, X. Shao, et al., Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics, Trends Biotechnol. 39 (2021) 43-58.
    E. Miyoshi, V. Swarup, Rogue gene networks gone awry in Alzheimer's disease, Neural Regen. Res. 16 (2021) 2415-2416.
    M. Zhang, S.W. Eichhorn, B. Zingg, et al., Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH, Nature 598 (2021) 137-143.
    C.A. Moreau, A. Raznahan, P. Bellec, et al., Dissecting autism and schizophrenia through neuroimaging genomics, Brain 144 (2021) 1943-1957.
    M. Wang, W.M. Song, C. Ming, et al., Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease:Review, recommendation, implementation and application, Mol. Neurodegener. 17 (2022), 17.
    Y. Fan, Z. Chen, M. Zhang, Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases, J. Transl. Med. 20 (2022), 291.
    D.E. Tylawsky, H. Kiguchi, J. Vaynshteyn, et al., P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis, Nat. Mater. 22 (2023) 391-399.
    Y. Ren, Z. Huang, L. Zhou, et al., Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas, Nat. Commun. 14 (2023), 1028.
    A.L. Ji, A.J. Rubin, K. Thrane, et al., Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma, Cell 182 (2020) 1661-1662.
    D. Kirschenbaum, E. Dadgar-Kiani, F. Catto, et al., Whole-brain microscopy reveals distinct temporal and spatial efficacy of anti-Aβ therapies, EMBO Mol. Med. 15 (2023), e16789.
    G.C. Bingham, F. Lee, A. Naba, et al., Spatial-omics:Novel approaches to probe cell heterogeneity and extracellular matrix biology, Matrix Biol. 91-92 (2020) 152-166.
    C.G. Williams, H.J. Lee, T. Asatsuma, et al., An introduction to spatial transcriptomics for biomedical research,. 14 (2022), 68.
    J.F. Navarro, D.L. Croteau, A. Jurek, et al., Spatial transcriptomics reveals genes associated with dysregulated mitochondrial functions and stress signaling in Alzheimer disease, iScience 23 (2020), 101556.
    W.-T. Chen, A. Lu, K. Craessaerts, et al., Spatial transcriptomics and In situ sequencing to study Alzheimer's disease, Cell 182 (2020) 976-991.e19.
    K.R. Maynard, L. Collado-Torres, L.M. Weber, et al., Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex, Nat. Neurosci. 24 (2021) 425-436.
    J.S. Sadick, M.R. O'Dea, P. Hasel, et al., Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease, Neuron 110 (2022) 1788-1805.e10.
    X. Wei, S. Fu, H. Li, et al., Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration, Science 377 (2022), eabp9444.
    M. Eisenstein, Seven technologies to watch in 2022, Nature 601 (2022) 658-661.
    T.G. Evans, Considerations for the use of transcriptomics in identifying the "genes that matter" for environmental adaptation, J. Exp. Biol. 218 (2015) 1925-1935.
    C.A. Waudby, C.M. Dobson, J. Christodoulou, Nature and regulation of protein folding on the ribosome, Trends Biochem. Sci. 44 (2019) 914-926.
    L.C. Czuba, K.M. Hillgren, P.W. Swaan, Post-translational modifications of transporters, Pharmacol. Ther. 192 (2018) 88-99.
    N.T. Ingolia, J.A. Hussmann, J.S. Weissman, Ribosome profiling:Global views of translation, Cold Spring. Harb. Perspect. Biol. 11 (2019), a032698.
    S.F. Nassar, K. Raddassi, T. Wu, Single-cell multiomics analysis for drug discovery, Metabolites 11 (2021), 729.
    D.M. Lovinger, Communication networks in the brain:Neurons, receptors, neurotransmitters, and alcohol, Alcohol Res. Health 31 (2008) 196-214.
    S.E. Hyman, Neurotransmitters, Curr. Biol. 15 (2005) R154-R158.
    R. Nativio, Y. Lan, G. Donahue, et al., An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease, Nat. Genet. 52 (2020) 1024-1035.
    B. Zhang, J. Wang, X. Wang, et al., Proteogenomic characterization of human colon and rectal cancer, Nature 513 (2014) 382-387.
    K.R. Campbell, A. Steif, E. Laks, et al., clonealign:Statistical integration of independent single-cell RNA and DNA sequencing data from human cancers, Genome Biol. 20 (2019), 54.
    L. Moses, L. Pachter, Museum of spatial transcriptomics, Nat. Methods 19 (2022) 534-546.
    P. Civita, S. Franceschi, P. Aretini, et al., Laser capture microdissection and RNA-seq analysis:High sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues, Front. Oncol. 9 (2019), 482.
    G. Peng, S. Suo, J. Chen, et al., Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo, Dev. Cell 36 (2016) 681-697.
    J. Chen, S. Suo, P.P. Tam, et al., Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq, Nat. Protoc. 12 (2017) 566-580.
    J.P. Junker, E.S. Noel, V. Guryev, et al., Genome-wide RNA tomography in the zebrafish embryo, Cell 159 (2014) 662-675.
    Y. Lee, D. Bogdanoff, Y. Wang, et al., XYZeq:Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment, Sci. Adv. 7 (2021), eabg4755.
    J.M. Beechem, High-plex spatially resolved RNA and protein detection using digital spatial profiling:A technology designed for immuno-oncology biomarker discovery and translational research, Methods Mol. Biol. 2055 (2020) 563-583.
    C.R. Merritt, G.T. Ong, S.E. Church, et al., Multiplex digital spatial profiling of proteins and RNA in fixed tissue, Nat. Biotechnol. 38 (2020) 586-599.
    Y. Liu, M. Yang, Y. Deng, et al., High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue, Cell 183 (2020) 1665-1681.e18.
    P.L. Stahl, F. Salmén, S. Vickovic, et al., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics, Science 353 (2016) 78-82.
    N. Wang, X. Li, R. Wang, et al., Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment, Biotechnol. J. 16 (2021), e2100041.
    E.E. Dixon, H. Wu, Y. Muto, et al., Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model, J. Am. Soc. Nephrol. 33 (2022) 279-289.
    S.G. Rodriques, R.R. Stickels, A. Goeva, et al., Slide-seq:A scalable technology for measuring genome-wide expression at high spatial resolution, Science 363 (2019) 1463-1467.
    S. Vickovic, G. Eraslan, F. Salmén, et al., High-definition spatial transcriptomics for in situ tissue profiling, Nat. Methods 16 (2019) 987-990.
    S.R. Srivatsan, J.L. McFaline-Figueroa, V. Ramani, et al., Massively multiplex chemical transcriptomics at single-cell resolution, Science 367 (2020) 45-51.
    S.R. Srivatsan, M.C. Regier, E. Barkan, et al., Embryo-scale, single-cell spatial transcriptomics, Science 373 (2021) 111-117.
    A. Chen, S. Liao, M. Cheng, et al., Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays, Cell 185 (2022) 1777-1792.e21.
    R. Drmanac, A.B. Sparks, M.J. Callow, et al., Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays, Science 327 (2010) 78-81.
    A. Raj, P. van den Bogaard, S.A. Rifkin, et al., Imaging individual mRNA molecules using multiple singly labeled probes, Nat. Methods 5 (2008) 877-879.
    K.H. Chen, A.N. Boettiger, J.R. Moffitt, et al., RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells, Science 348 (2015), aaa6090.
    J.R. Moffitt, D. Bambah-Mukku, S.W. Eichhorn, et al., Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region, Science 362 (2018), eaau5324.
    R. Fang, C. Xia, J.L. Close, et al., Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH, Science 377 (2022) 56-62.
    C. Xia, J. Fan, G. Emanuel, et al., Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression, Proc. Natl. Acad. Sci. U S A 116 (2019) 19490-19499.
    G. Wang, J.R. Moffitt, X. Zhuang, Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy, Sci. Rep. 8 (2018), 4847.
    E. Lubeck, A.F. Coskun, T. Zhiyentayev, et al., Single-cell in situ RNA profiling by sequential hybridization, Nat. Methods 11 (2014) 360-361.
    E. Lubeck, L. Cai, Single-cell systems biology by super-resolution imaging and combinatorial labeling, Nat. Methods 9 (2012) 743-748.
    C.L. Eng, M. Lawson, Q. Zhu, et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature 568 (2019) 235-239.
    M.J. Levesque, P. Ginart, Y. Wei, et al., Visualizing SNVs to quantify allele-specific expression in single cells, Nat. Methods 10 (2013) 865-867.
    M.J. Levesque, A. Raj, Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation, Nat. Methods 10 (2013) 246-248.
    X. Wang, W.E. Allen, M.A. Wright, et al., Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science 361 (2018), eaat5691.
    R. Ke, M. Mignardi, A. Pacureanu, et al., In situ sequencing for RNA analysis in preserved tissue and cells, Nat. Methods 10 (2013) 857-860.
    X. Chen, Y.C. Sun, G.M. Church, et al., Efficient in situ barcode sequencing using padlock probe-based BaristaSeq, Nucleic Acids Res. 46 (2018), e22.
    J.H. Lee, E.R. Daugharthy, J. Scheiman, et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc. 10 (2015) 442-458.
    S. Alon, D.R. Goodwin, A. Sinha, et al., Expansion sequencing:spatially precise in situ transcriptomics in intact biological systems, Science 371 (2021), eaax2656.
    C. Ortiz, J.F. Navarro, A. Jurek, et al., Molecular atlas of the adult mouse brain, Sci. Adv. 6 (2020), eabb3446.
    P. Hasel, I.V.L. Rose, J.S. Sadick, et al., Neuroinflammatory astrocyte subtypes in the mouse brain, Nat. Neurosci. 24 (2021) 1475-1487.
    H. Keren-Shaul, A. Spinrad, A. Weiner, et al., A unique microglia type associated with restricting development of Alzheimer's disease, Cell 169 (2017) 1276-1290.e17.
    S. Zechel, P. Zajac, P. Lönnerberg, et al., Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq, Genome Biol. 15 (2014), 486.
    S. Shah, E. Lubeck, W. Zhou, et al., In Situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus, Neuron 92 (2016) 342-357.
    C.C. Xiang, E. Mezey, M. Chen, et al., Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling, Nucleic Acids Res. 32 (2004), e185.
    M. Menzel, J.A. Reuter, D. Gräβel, et al., Scattered Light Imaging:Resolving the substructure of nerve fiber crossings in whole brain sections with micrometer resolution, Neuroimage 233 (2021), 117952.
    D. Tavares-Ferreira, S. Shiers, P.R. Ray, et al., Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors, Sci. Transl. Med. 14 (2022), eabj8186.
    K.A. Aldinger, Z. Thomson, I.G. Phelps, et al., Spatial and cell type transcriptional landscape of human cerebellar development, Nat. Neurosci. 24 (2021) 1163-1175.
    B. D'Orsi, J. Mateyka, J.H.M. Prehn, Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok, Neurochem. Int. 109 (2017) 162-170.
    J.J. Schulman, L.M. Szczesniak, E.N. Bunker, et al., Bok regulates mitochondrial fusion and morphology, Cell Death Differ. 26 (2019) 2682-2694.
    R.H. Swerdlow, Mitochondria and mitochondrial cascades in Alzheimer's disease, J. Alzheimers Dis. 62 (2018) 1403-1416.
    S. Maniatis, T. Äijö, S. Vickovic, et al., Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis, Science 364 (2019) 89-93.
    J.C. Dodge, C.M. Treleaven, J. Pacheco, et al., Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. U S A 112 (2015) 8100-8105.
    X. Xu, A. Denic, L.R. Jordan, et al., A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis, Dis. Model. Mech. 8 (2015) 831-842.
    J.M. Gregory, K. McDade, M.R. Livesey, et al., Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis, Neuropathol. Appl. Neurobiol. 46 (2020) 441-457.
    M.G. Filbin, I. Tirosh, V. Hovestadt, et al., Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq, Science 360 (2018) 331-335.
    C.P. Couturier, S. Ayyadhury, P.U. Le, et al., Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy, Nat. Commun. 11 (2020), 3406.
    X. Chen, Y.C. Sun, H. Zhan, et al., High-throughput mapping of long-range neuronal projection using in situ sequencing, Cell 179 (2019) 772-786.e19.
    J.M. Kebschull, P. Garcia da Silva, A.P. Reid, et al., High-throughput mapping of single-neuron projections by sequencing of barcoded RNA, Neuron 91 (2016) 975-987.
    R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples:Localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 69 (1997) 4751-4760.
    A. Midey, H. Olivos, B. Shrestha, Spatial mapping of cellular metabolites using DESI ion mobility mass spectrometry, Methods Mol. Biol. 2064 (2020) 181-190.
    J.G. Swales, A. Dexter, G. Hamm, et al., Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging, Anal. Chem. 90 (2018) 6051-6058.
    G. Wang, B. Heijs, S. Kostidis, et al., Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation, Cell Stem Cell 29 (2022) 1580-1593.e7.
    H.Y. Wang, H.W. Wu, P.J. Tsai, et al., MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemia-mediated changes of lipids, Anal. Bioanal. Chem. 404 (2012) 113-124.
    D. Miura, Y. Fujimura, M. Yamato, et al., Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors, Anal. Chem. 82 (2010) 9789-9796.
    S. Ntshangase, S. Mdanda, S.D. Singh, et al., Mass spectrometry imaging demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs, ACS Omega 4 (2019) 21169-21177.
    P.J. Todd, T.G. Schaaff, P. Chaurand, et al., Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization, J. Mass Spectrom. 36 (2001) 355-369.
    M. Stoeckli, P. Chaurand, D.E. Hallahan, et al., Imaging mass spectrometry:A new technology for the analysis of protein expression in mammalian tissues, Nat. Med. 7 (2001) 493-496.
    J.M. Wiseman, D.R. Ifa, Q. Song, et al., Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry, Angew. Chem. Int. Ed. Engl. 45 (2006) 7188-7192.
    A. Doerr, Mass spectrometry imaging takes off, Nat. Methods 15 (2018), 32.
    M. Kompauer, S. Heiles, B. Spengler, Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution, Nat. Methods 14 (2017) 90-96.
    M. Kompauer, S. Heiles, B. Spengler, Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces, Nat. Methods 14 (2017) 1156-1158.
    J.L. Norris, R.M. Caprioli, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research, Chem. Rev. 113 (2013) 2309-2342.
    N. Ogrinc Potočnik, T. Porta, M. Becker, et al., Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam, Rapid Commun. Mass Spectrom. 29 (2015) 2195-2203.
    J.S. Fletcher, J.C. Vickerman, N. Winograd, Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry, Curr. Opin. Chem. Biol. 15 (2011) 733-740.
    S. Ninomiya, K. Ichiki, H. Yamada, et al., Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams, Rapid Commun. Mass Spectrom. 23 (2009) 3264-3268.
    J.S. Fletcher, J.C. Vickerman, Secondary ion mass spectrometry:Characterizing complex samples in two and three dimensions, Anal. Chem. 85 (2013) 610-639.
    E.A. Jones, N.P. Lockyer, J.C. Vickerman, Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam, Anal. Chem. 80 (2008) 2125-2132.
    N. Davies, D.E. Weibel, P. Blenkinsopp, et al., Development and experimental application of a gold liquid metal ion source, Appl. Surf. Sci. 203-204 (2003) 223-227.
    R.G. Cooks, Z. Ouyang, Z. Takats, et al., Detection Technologies. Ambient mass spectrometry, Science 311 (2006) 1566-1570.
    K. Chan, P. Lanthier, X. Liu, et al., MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix, Anal. Chim. Acta 639 (2009) 57-61.
    Z. Takáts, J.M. Wiseman, R.G. Cooks, Ambient mass spectrometry using desorption electrospray ionization (DESI):Instrumentation, mechanisms and applications in forensics, chemistry, and biology, J. Mass Spectrom. 40 (2005) 1261-1275.
    J. Hermann, H. Noels, W. Theelen, et al., Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging, Anal. Bioanal. Chem. 412 (2020) 1263-1275.
    E.H. Seeley, S.R. Oppenheimer, D. Mi, et al., Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections, J. Am. Soc. Mass Spectrom. 19 (2008) 1069-1077.
    Y. Chen, W. Tang, A. Gordon, et al., Development of an integrated tissue pretreatment protocol for enhanced MALDI MS imaging of drug distribution in the brain, J. Am. Soc. Mass Spectrom. 31 (2020) 1066-1073.
    Y. Tanaka, M. Hirata, S. Shinonome, et al., Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity, Sci. Rep. 8 (2018), 343.
    Š. Strnad, V. Pražienková, D. Sýkora, et al., The use of 1,5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders, Talanta 201 (2019) 364-372.
    E.R. van Hove, D.F. Smith, L. Fornai, et al., An alternative paper based tissue washing method for mass spectrometry imaging:Localized washing and fragile tissue analysis, J. Am. Soc. Mass Spectrom. 22 (2011) 1885-1890.
    H. Tanaka, M. Hirata, S. Shinonome, et al., Preclinical antitumor activity of S-222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2, Cancer Sci. 105 (2014) 1040-1048.
    M. Liu, L. Tang, X. Liu, et al., An evidence-based review of related metabolites and metabolic network research on cerebral ischemia, Oxid. Med. Cell. Longev. 2016 (2016), 9162074.
    M. Shariatgorji, A. Nilsson, P. Kallback, et al., Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines, J. Am. Soc. Mass Spectrom. 26 (2015) 934-939.
    M. Shariatgorji, A. Nilsson, R.J. Goodwin, et al., Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections, Neuron 84 (2014) 697-707.
    T.C. Rohner, D. Staab, M. Stoeckli, MALDI mass spectrometric imaging of biological tissue sections, Mech. Ageing Dev. 126 (2005) 177-185.
    N. Kakuda, T. Miyasaka, N. Iwasaki, et al., Distinct deposition of amyloid-β species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry, Acta Neuropathol. Commun. 5 (2017), 73.
    I. Kaya, D. Brinet, W. Michno, et al., Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer's disease, ACS Chem. Neurosci. 8 (2017) 2778-2790.
    I. Kaya, D. Brinet, W. Michno, et al., Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer's disease mice (tgArcSwe) using MALDI imaging mass spectrometry, ACS Chem. Neurosci. 8 (2017) 347-355.
    H. Hulme, E. Fridjonsdottir, H. Gunnarsdottir, et al., Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy, Neurobiol. Dis. 137 (2020), 104738.
    H. Liu, R. Chen, J. Wang, et al., 1,5-diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia, Anal. Chem. 86 (2014) 10114-10121.
    M. Irie, Y. Fujimura, M. Yamato, et al., Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model, Metabolomics 10 (2014) 473-483.
    L.S. Eberlin, I. Norton, A.L. Dill, et al., Classifying human brain tumors by lipid imaging with mass spectrometry, Cancer Res. 72 (2012) 645-654.
    L.S. Eberlin, I. Norton, D. Orringer, et al., Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors, Proc. Natl. Acad. Sci. U S A 110 (2013) 1611-1616.
    H.M. Brown, V. Pirro, R.G. Cooks, From DESI to the MasSpec Pen:Ambient ionization mass spectrometry for tissue analysis and intrasurgical cancer diagnosis, Clin. Chem. 64 (2018) 628-630.
    V. Pirro, L.S. Eberlin, P. Oliveri, et al., Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections, Analyst 137 (2012) 2374-2380.
    J.A. Losman, W.G. Kaelin Jr., What a difference a hydroxyl makes:Mutant IDH, (R)-2-hydroxyglutarate, and cancer, Genes Dev. 27 (2013) 836-852.
    L. Dang, D.W. White, S. Gross, et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature 462 (2009) 739-744.
    S. Santagata, L.S. Eberlin, I. Norton, et al., Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery, Proc. Natl. Acad. Sci. U S A 111 (2014) 11121-11126.
    C. Esteve, E.A. Tolner, R. Shyti, et al., Mass spectrometry imaging of amino neurotransmitters:A comparison of derivatization methods and application in mouse brain tissue, Metabolomics 12 (2016), 30.
    A. Kleinridders, H.A. Ferris, M.L. Reyzer, et al., Regional differences in brain glucose metabolism determined by imaging mass spectrometry, Mol. Metab. 12 (2018) 113-121.
    R.J. McCrimmon, C.M. Ryan, B.M. Frier, Diabetes and cognitive dysfunction, Lancet 379 (2012) 2291-2299.
    V. Srikanth, A.J. Sinclair, F. Hill-Briggs, et al., Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities, Lancet Diabetes Endocrinol. 8 (2020) 535-545.
    D.R. Bandura, V.I. Baranov, O.I. Ornatsky, et al., Mass cytometry:Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry, Anal. Chem. 81 (2009) 6813-6822.
    C. Böttcher, S. Schlickeiser, M.A.M. Sneeboer, et al., Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry, Nat. Neurosci. 22 (2019) 78-90.
    A.Z. Wang, J.A. Bowman-Kirigin, R. Desai, et al., Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response, Genome Med. 14 (2022), 49.
    C. Park, G. Ponath, M. Levine-Ritterman, et al., The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions, Acta Neuropathol. Commun. 7 (2019), 130.
    V. Ramaglia, S. Sheikh-Mohamed, K. Legg, et al., Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry, eLife 8 (2019), 48051.
    D.W. Moon, Y.H. Park, S.Y. Lee, et al., Multiplex protein imaging with secondary ion mass spectrometry using metal oxide nanoparticle-conjugated antibodies, ACS Appl. Mater. Interfaces 12 (2020) 18056-18064.
    J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol. 26 (2008) 1367-1372.
    M. Holzlechner, S. Reitschmidt, S. Gruber, et al., Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging, Proteomics 16 (2016) 1742-1746.
    H. Tsugawa, T. Cajka, T. Kind, et al., MS-DIAL:Data-independent MS/MS deconvolution for comprehensive metabolome analysis, Nat. Methods 12 (2015) 523-526.
    A. Andersson, J. Bergenstrahle, M. Asp, et al., Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography, Commun. Biol. 3 (2020), 565.
    X. Qiu, D.Y. Zhu, J. Yao, et al., Spateo:Multidimensional spatiotemporal modeling of single-cell spatial transcriptomics, bioRxiv. 2022. https://doi.org/10.1101/2022.12.07.519417.
    H. Tsugawa, T. Cajka, T. Kind, et al.,. 49 (2021), e50.
    R. Zeira, M. Land, A. Strzalkowski, et al., Alignment and integration of spatial transcriptomics data, Nat. Methods 19 (2022) 567-575.
    J. Liao, J. Qian, Y. Fang, et al., De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution, Nat. Commun. 13 (2022), 6498.
    Y. Hao, S. Hao, E. Andersen-Nissen, et al., Integrated analysis of multimodal single-cell data, Cell 184 (2021) 3573-3587.e29.
    X. Qian, K.D. Harris, T. Hauling, et al., Probabilistic cell typing enables fine mapping of closely related cell types in situ, Nat. Methods 17 (2020) 101-106.
    D. Sun, Z. Liu, T. Li, et al., STRIDE:Accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing, Nucleic Acids Res. 50 (2022), e42.
    V. Svensson, S.A. Teichmann, O. Stegle, SpatialDE:Identification of spatially variable genes, Nat. Methods 15 (2018) 343-346.
    S. Sun, J. Zhu, X. Zhou, Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies, Nat. Methods 17 (2020) 193-200.
    D. Pham, X. Tan, J. Xu, et al., stLearn:Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues, bioRxiv. 2020. https://doi.org/10.1101/2020.05.31.125658.
    V. Kleshchevnikov, A. Shmatko, E. Dann, et al., Cell2location maps fine-grained cell types in spatial transcriptomics, Nat. Biotechnol. 40 (2022) 661-671.
    E.M. Holgersen, S. Gandhi, Y. Zhou, et al., Transcriptome-wide off-target effects of steric-blocking oligonucleotides, Nucleic Acid Ther. 31 (2021) 392-403.
    Q. Zhu, S. Shah, R. Dries, et al., Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data, Nat. Biotechnol. 36 (2018) 1183-1190.
    R. Dries, Q. Zhu, R. Dong, et al., Giotto:A toolbox for integrative analysis and visualization of spatial expression data, Genome Biol. 22 (2021), 78.
    K.H. Tang, S. Li, A. Khodadadi-Jamayran, et al., Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC, Cancer Discov. 12 (2022) 47-61.
    K.W. Govek, E.C. Troisi, Z. Miao, et al., Single-cell transcriptomic analysis of mIHC images via antigen mapping, Sci. Adv. 7 (2021), eabc5464.
    X. Shao, C. Li, H. Yang, et al., Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk, Nat. Commun. 13 (2022), 4429.
    C. Wang, D. Sun, X. Huang, et al., Integrative analyses of single-cell transcriptome and regulome using MAESTRO, Genome Biol. 21 (2020), 198.
    H.J. Kim, Y. Lin, T.A. Geddes, et al., CiteFuse enables multi-modal analysis of CITE-seq data, Bioinformatics 36 (2020) 4137-4143.
    A. Gayoso, Z. Steier, R. Lopez, et al., Joint probabilistic modeling of single-cell multi-omic data with totalVI, Nat. Methods 18 (2021) 272-282.
    S. Jin, L. Zhang, Q. Nie, scAI:An unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles, Genome Biol. 21 (2020), 25.
    R. Argelaguet, D. Arnol, D. Bredikhin, et al., MOFA+:A statistical framework for comprehensive integration of multi-modal single-cell data, Genome Biol. 21 (2020), 111.
    X. Wang, Z. Sun, Y. Zhang, et al., BRE-SC:A bayesian random effects mixture model for joint clustering single cell multi-omics data, Nucleic Acids Res. 48 (2020) 5814-5824.
    W. Liu, X. Liao, Z. Luo, et al., Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST, Nat. Commun. 14 (2023), 296.
    K. Cao, X. Bai, Y. Hong, et al., Unsupervised topological alignment for single-cell multi-omics integration, Bioinformatics 36 (2020) i48-i56.
    J.D. Welch, V. Kozareva, A. Ferreira, et al., Single-cell multi-omic integration compares and contrasts features of brain cell identity, Cell 177 (2019) 1873-1887.e17.
    M. Stevens, A. Nanou, L. Terstappen, et al., StarDist image segmentation improves circulating tumor cell detection, Cancers (Basel) 14 (2022), 2916.
    S. Mandal, V. Uhlmann, SplineDist:Automated cell segmentation with spline curves, bioRxiv. 2021. https://doi.org/10.1101/2020.10.27.357640.
    C. Stringer, T. Wang, M. Michaelos, et al., Cellpose:A generalist algorithm for cellular segmentation, Nat. Methods 18 (2021) 100-106.
    C.W. Grant, E.F. Barreto, R. Kumar, et al., Multi-omics characterization of early- and adult-onset major depressive disorder, J. Pers. Med. 12 (2022), 412.
    S. Vickovic, B. Lötstedt, J. Klughammer, et al., SM-Omics is an automated platform for high-throughput spatial multi-omics, Nat. Commun. 13 (2022), 795.
    V. Kumar, K. Ramnarayanan, R. Sundar, et al., Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer, Cancer Discov. 12 (2022) 670-691.
    S. Prokop, K.R. Miller, S.R. Labra, et al., Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples, Acta Neuropathol. 138 (2019) 613-630.
    M. Kaufmann, A.L. Schaupp, R. Sun, et al., Identification of early neurodegenerative pathways in progressive multiple sclerosis, Nat. Neurosci. 25 (2022) 944-955.
    V.M. Ravi, P. Will, J. Kueckelhaus, et al., Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma, Cancer Cell 40 (2022) 639-655.e13.
    A.K. Ottens, The methodology of neuroproteomics, Methods Mol. Biol. 566 (2009) 1-21.
    H. Haas, P. Panula, The role of histamine and the tuberomamillary nucleus in the nervous system, Nat. Rev. Neurosci. 4 (2003) 121-130.
    G.M. Shepherd, M. Raastad, Axonal varicosity distributions along parallel fibers:A new angle on a cerebellar circuit, Cerebellum 2 (2003) 110-113.
    N.N. Foster, J. Barry, L. Korobkova, et al., The mouse cortico-basal ganglia-thalamic network, Nature 598 (2021) 188-194.
    BRAIN Initiative Cell Census Network (BICCN), A multimodal cell census and atlas of the mammalian primary motor cortex, Nature 598 (2021) 86-102.
    H. Peng, P. Xie, L. Liu, et al., Morphological diversity of single neurons in molecularly defined cell types, Nature 598 (2021) 174-181.
    W. Yang, R. Yuste, In vivo imaging of neural activity, Nat. Methods 14 (2017) 349-359.
    C. Grienberger, A. Konnerth, Imaging calcium in neurons, Neuron 73 (2012) 862-885.
    W. Pei, T.B. Feyerabend, J. Rössler, et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo, Nature 548 (2017) 456-460.
    X. Qian, H. Song, G.-L. Ming, Brain organoids:Advances, applications and challenges, Development 146 (2019).
    K. Watanabe, D. Kamiya, A. Nishiyama, et al., Directed differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci. 8 (2005) 288-296.
    K. Watanabe, M. Ueno, D. Kamiya, et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nat. Biotechnol. 25 (2007) 681-686.
    B. Bakker, R.D.W. Vaes, M.R. Aberle, et al., Preparing ductal epithelial organoids for high-spatial-resolution molecular profiling using mass spectrometry imaging, Nat. Protoc. 17 (2022) 962-979.
    M.L. Spruill, M. Maletic-Savatic, H. Martin, et al., Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging, Biochem. Pharmacol. 201 (2022), 115080.
    M.K. Passarelli, A. Pirkl, R. Moellers, et al., The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power, Nat. Methods 14 (2017) 1175-1183.
    M.T. Proetto, C.R. Anderton, D. Hu, et al., Cellular delivery of nanoparticles revealed with combined optical and isotopic nanoscopy, ACS Nano 10 (2016) 4046-4054.
    V.J. Orphan, C.H. House, K.U. Hinrichs, et al., Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science 293 (2001) 484-487.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (412) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return