Citation: | Yijia Fangma, Mengting Liu, Jie Liao, Zhong Chen, Yanrong Zheng. Dissecting the brain with spatially resolved multi-omics[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 694-710. doi: 10.1016/j.jpha.2023.04.003 |
J. Liao, X. Lu, X. Shao, et al., Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics, Trends Biotechnol. 39 (2021) 43-58.
|
E. Miyoshi, V. Swarup, Rogue gene networks gone awry in Alzheimer's disease, Neural Regen. Res. 16 (2021) 2415-2416.
|
M. Zhang, S.W. Eichhorn, B. Zingg, et al., Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH, Nature 598 (2021) 137-143.
|
C.A. Moreau, A. Raznahan, P. Bellec, et al., Dissecting autism and schizophrenia through neuroimaging genomics, Brain 144 (2021) 1943-1957.
|
M. Wang, W.M. Song, C. Ming, et al., Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease:Review, recommendation, implementation and application, Mol. Neurodegener. 17 (2022), 17.
|
Y. Fan, Z. Chen, M. Zhang, Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases, J. Transl. Med. 20 (2022), 291.
|
D.E. Tylawsky, H. Kiguchi, J. Vaynshteyn, et al., P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis, Nat. Mater. 22 (2023) 391-399.
|
Y. Ren, Z. Huang, L. Zhou, et al., Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas, Nat. Commun. 14 (2023), 1028.
|
A.L. Ji, A.J. Rubin, K. Thrane, et al., Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma, Cell 182 (2020) 1661-1662.
|
D. Kirschenbaum, E. Dadgar-Kiani, F. Catto, et al., Whole-brain microscopy reveals distinct temporal and spatial efficacy of anti-Aβ therapies, EMBO Mol. Med. 15 (2023), e16789.
|
G.C. Bingham, F. Lee, A. Naba, et al., Spatial-omics:Novel approaches to probe cell heterogeneity and extracellular matrix biology, Matrix Biol. 91-92 (2020) 152-166.
|
C.G. Williams, H.J. Lee, T. Asatsuma, et al., An introduction to spatial transcriptomics for biomedical research,. 14 (2022), 68.
|
J.F. Navarro, D.L. Croteau, A. Jurek, et al., Spatial transcriptomics reveals genes associated with dysregulated mitochondrial functions and stress signaling in Alzheimer disease, iScience 23 (2020), 101556.
|
W.-T. Chen, A. Lu, K. Craessaerts, et al., Spatial transcriptomics and In situ sequencing to study Alzheimer's disease, Cell 182 (2020) 976-991.e19.
|
K.R. Maynard, L. Collado-Torres, L.M. Weber, et al., Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex, Nat. Neurosci. 24 (2021) 425-436.
|
J.S. Sadick, M.R. O'Dea, P. Hasel, et al., Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease, Neuron 110 (2022) 1788-1805.e10.
|
X. Wei, S. Fu, H. Li, et al., Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration, Science 377 (2022), eabp9444.
|
M. Eisenstein, Seven technologies to watch in 2022, Nature 601 (2022) 658-661.
|
T.G. Evans, Considerations for the use of transcriptomics in identifying the "genes that matter" for environmental adaptation, J. Exp. Biol. 218 (2015) 1925-1935.
|
C.A. Waudby, C.M. Dobson, J. Christodoulou, Nature and regulation of protein folding on the ribosome, Trends Biochem. Sci. 44 (2019) 914-926.
|
L.C. Czuba, K.M. Hillgren, P.W. Swaan, Post-translational modifications of transporters, Pharmacol. Ther. 192 (2018) 88-99.
|
N.T. Ingolia, J.A. Hussmann, J.S. Weissman, Ribosome profiling:Global views of translation, Cold Spring. Harb. Perspect. Biol. 11 (2019), a032698.
|
S.F. Nassar, K. Raddassi, T. Wu, Single-cell multiomics analysis for drug discovery, Metabolites 11 (2021), 729.
|
D.M. Lovinger, Communication networks in the brain:Neurons, receptors, neurotransmitters, and alcohol, Alcohol Res. Health 31 (2008) 196-214.
|
S.E. Hyman, Neurotransmitters, Curr. Biol. 15 (2005) R154-R158.
|
R. Nativio, Y. Lan, G. Donahue, et al., An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease, Nat. Genet. 52 (2020) 1024-1035.
|
B. Zhang, J. Wang, X. Wang, et al., Proteogenomic characterization of human colon and rectal cancer, Nature 513 (2014) 382-387.
|
K.R. Campbell, A. Steif, E. Laks, et al., clonealign:Statistical integration of independent single-cell RNA and DNA sequencing data from human cancers, Genome Biol. 20 (2019), 54.
|
L. Moses, L. Pachter, Museum of spatial transcriptomics, Nat. Methods 19 (2022) 534-546.
|
P. Civita, S. Franceschi, P. Aretini, et al., Laser capture microdissection and RNA-seq analysis:High sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues, Front. Oncol. 9 (2019), 482.
|
G. Peng, S. Suo, J. Chen, et al., Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo, Dev. Cell 36 (2016) 681-697.
|
J. Chen, S. Suo, P.P. Tam, et al., Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq, Nat. Protoc. 12 (2017) 566-580.
|
J.P. Junker, E.S. Noel, V. Guryev, et al., Genome-wide RNA tomography in the zebrafish embryo, Cell 159 (2014) 662-675.
|
Y. Lee, D. Bogdanoff, Y. Wang, et al., XYZeq:Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment, Sci. Adv. 7 (2021), eabg4755.
|
J.M. Beechem, High-plex spatially resolved RNA and protein detection using digital spatial profiling:A technology designed for immuno-oncology biomarker discovery and translational research, Methods Mol. Biol. 2055 (2020) 563-583.
|
C.R. Merritt, G.T. Ong, S.E. Church, et al., Multiplex digital spatial profiling of proteins and RNA in fixed tissue, Nat. Biotechnol. 38 (2020) 586-599.
|
Y. Liu, M. Yang, Y. Deng, et al., High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue, Cell 183 (2020) 1665-1681.e18.
|
P.L. Stahl, F. Salmén, S. Vickovic, et al., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics, Science 353 (2016) 78-82.
|
N. Wang, X. Li, R. Wang, et al., Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment, Biotechnol. J. 16 (2021), e2100041.
|
E.E. Dixon, H. Wu, Y. Muto, et al., Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model, J. Am. Soc. Nephrol. 33 (2022) 279-289.
|
S.G. Rodriques, R.R. Stickels, A. Goeva, et al., Slide-seq:A scalable technology for measuring genome-wide expression at high spatial resolution, Science 363 (2019) 1463-1467.
|
S. Vickovic, G. Eraslan, F. Salmén, et al., High-definition spatial transcriptomics for in situ tissue profiling, Nat. Methods 16 (2019) 987-990.
|
S.R. Srivatsan, J.L. McFaline-Figueroa, V. Ramani, et al., Massively multiplex chemical transcriptomics at single-cell resolution, Science 367 (2020) 45-51.
|
S.R. Srivatsan, M.C. Regier, E. Barkan, et al., Embryo-scale, single-cell spatial transcriptomics, Science 373 (2021) 111-117.
|
A. Chen, S. Liao, M. Cheng, et al., Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays, Cell 185 (2022) 1777-1792.e21.
|
R. Drmanac, A.B. Sparks, M.J. Callow, et al., Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays, Science 327 (2010) 78-81.
|
A. Raj, P. van den Bogaard, S.A. Rifkin, et al., Imaging individual mRNA molecules using multiple singly labeled probes, Nat. Methods 5 (2008) 877-879.
|
K.H. Chen, A.N. Boettiger, J.R. Moffitt, et al., RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells, Science 348 (2015), aaa6090.
|
J.R. Moffitt, D. Bambah-Mukku, S.W. Eichhorn, et al., Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region, Science 362 (2018), eaau5324.
|
R. Fang, C. Xia, J.L. Close, et al., Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH, Science 377 (2022) 56-62.
|
C. Xia, J. Fan, G. Emanuel, et al., Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression, Proc. Natl. Acad. Sci. U S A 116 (2019) 19490-19499.
|
G. Wang, J.R. Moffitt, X. Zhuang, Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy, Sci. Rep. 8 (2018), 4847.
|
E. Lubeck, A.F. Coskun, T. Zhiyentayev, et al., Single-cell in situ RNA profiling by sequential hybridization, Nat. Methods 11 (2014) 360-361.
|
E. Lubeck, L. Cai, Single-cell systems biology by super-resolution imaging and combinatorial labeling, Nat. Methods 9 (2012) 743-748.
|
C.L. Eng, M. Lawson, Q. Zhu, et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature 568 (2019) 235-239.
|
M.J. Levesque, P. Ginart, Y. Wei, et al., Visualizing SNVs to quantify allele-specific expression in single cells, Nat. Methods 10 (2013) 865-867.
|
M.J. Levesque, A. Raj, Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation, Nat. Methods 10 (2013) 246-248.
|
X. Wang, W.E. Allen, M.A. Wright, et al., Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science 361 (2018), eaat5691.
|
R. Ke, M. Mignardi, A. Pacureanu, et al., In situ sequencing for RNA analysis in preserved tissue and cells, Nat. Methods 10 (2013) 857-860.
|
X. Chen, Y.C. Sun, G.M. Church, et al., Efficient in situ barcode sequencing using padlock probe-based BaristaSeq, Nucleic Acids Res. 46 (2018), e22.
|
J.H. Lee, E.R. Daugharthy, J. Scheiman, et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc. 10 (2015) 442-458.
|
S. Alon, D.R. Goodwin, A. Sinha, et al., Expansion sequencing:spatially precise in situ transcriptomics in intact biological systems, Science 371 (2021), eaax2656.
|
C. Ortiz, J.F. Navarro, A. Jurek, et al., Molecular atlas of the adult mouse brain, Sci. Adv. 6 (2020), eabb3446.
|
P. Hasel, I.V.L. Rose, J.S. Sadick, et al., Neuroinflammatory astrocyte subtypes in the mouse brain, Nat. Neurosci. 24 (2021) 1475-1487.
|
H. Keren-Shaul, A. Spinrad, A. Weiner, et al., A unique microglia type associated with restricting development of Alzheimer's disease, Cell 169 (2017) 1276-1290.e17.
|
S. Zechel, P. Zajac, P. Lönnerberg, et al., Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq, Genome Biol. 15 (2014), 486.
|
S. Shah, E. Lubeck, W. Zhou, et al., In Situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus, Neuron 92 (2016) 342-357.
|
C.C. Xiang, E. Mezey, M. Chen, et al., Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling, Nucleic Acids Res. 32 (2004), e185.
|
M. Menzel, J.A. Reuter, D. Gräβel, et al., Scattered Light Imaging:Resolving the substructure of nerve fiber crossings in whole brain sections with micrometer resolution, Neuroimage 233 (2021), 117952.
|
D. Tavares-Ferreira, S. Shiers, P.R. Ray, et al., Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors, Sci. Transl. Med. 14 (2022), eabj8186.
|
K.A. Aldinger, Z. Thomson, I.G. Phelps, et al., Spatial and cell type transcriptional landscape of human cerebellar development, Nat. Neurosci. 24 (2021) 1163-1175.
|
B. D'Orsi, J. Mateyka, J.H.M. Prehn, Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok, Neurochem. Int. 109 (2017) 162-170.
|
J.J. Schulman, L.M. Szczesniak, E.N. Bunker, et al., Bok regulates mitochondrial fusion and morphology, Cell Death Differ. 26 (2019) 2682-2694.
|
R.H. Swerdlow, Mitochondria and mitochondrial cascades in Alzheimer's disease, J. Alzheimers Dis. 62 (2018) 1403-1416.
|
S. Maniatis, T. Äijö, S. Vickovic, et al., Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis, Science 364 (2019) 89-93.
|
J.C. Dodge, C.M. Treleaven, J. Pacheco, et al., Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. U S A 112 (2015) 8100-8105.
|
X. Xu, A. Denic, L.R. Jordan, et al., A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis, Dis. Model. Mech. 8 (2015) 831-842.
|
J.M. Gregory, K. McDade, M.R. Livesey, et al., Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis, Neuropathol. Appl. Neurobiol. 46 (2020) 441-457.
|
M.G. Filbin, I. Tirosh, V. Hovestadt, et al., Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq, Science 360 (2018) 331-335.
|
C.P. Couturier, S. Ayyadhury, P.U. Le, et al., Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy, Nat. Commun. 11 (2020), 3406.
|
X. Chen, Y.C. Sun, H. Zhan, et al., High-throughput mapping of long-range neuronal projection using in situ sequencing, Cell 179 (2019) 772-786.e19.
|
J.M. Kebschull, P. Garcia da Silva, A.P. Reid, et al., High-throughput mapping of single-neuron projections by sequencing of barcoded RNA, Neuron 91 (2016) 975-987.
|
R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples:Localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 69 (1997) 4751-4760.
|
A. Midey, H. Olivos, B. Shrestha, Spatial mapping of cellular metabolites using DESI ion mobility mass spectrometry, Methods Mol. Biol. 2064 (2020) 181-190.
|
J.G. Swales, A. Dexter, G. Hamm, et al., Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging, Anal. Chem. 90 (2018) 6051-6058.
|
G. Wang, B. Heijs, S. Kostidis, et al., Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation, Cell Stem Cell 29 (2022) 1580-1593.e7.
|
H.Y. Wang, H.W. Wu, P.J. Tsai, et al., MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemia-mediated changes of lipids, Anal. Bioanal. Chem. 404 (2012) 113-124.
|
D. Miura, Y. Fujimura, M. Yamato, et al., Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors, Anal. Chem. 82 (2010) 9789-9796.
|
S. Ntshangase, S. Mdanda, S.D. Singh, et al., Mass spectrometry imaging demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs, ACS Omega 4 (2019) 21169-21177.
|
P.J. Todd, T.G. Schaaff, P. Chaurand, et al., Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization, J. Mass Spectrom. 36 (2001) 355-369.
|
M. Stoeckli, P. Chaurand, D.E. Hallahan, et al., Imaging mass spectrometry:A new technology for the analysis of protein expression in mammalian tissues, Nat. Med. 7 (2001) 493-496.
|
J.M. Wiseman, D.R. Ifa, Q. Song, et al., Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry, Angew. Chem. Int. Ed. Engl. 45 (2006) 7188-7192.
|
A. Doerr, Mass spectrometry imaging takes off, Nat. Methods 15 (2018), 32.
|
M. Kompauer, S. Heiles, B. Spengler, Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution, Nat. Methods 14 (2017) 90-96.
|
M. Kompauer, S. Heiles, B. Spengler, Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces, Nat. Methods 14 (2017) 1156-1158.
|
J.L. Norris, R.M. Caprioli, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research, Chem. Rev. 113 (2013) 2309-2342.
|
N. Ogrinc Potočnik, T. Porta, M. Becker, et al., Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam, Rapid Commun. Mass Spectrom. 29 (2015) 2195-2203.
|
J.S. Fletcher, J.C. Vickerman, N. Winograd, Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry, Curr. Opin. Chem. Biol. 15 (2011) 733-740.
|
S. Ninomiya, K. Ichiki, H. Yamada, et al., Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams, Rapid Commun. Mass Spectrom. 23 (2009) 3264-3268.
|
J.S. Fletcher, J.C. Vickerman, Secondary ion mass spectrometry:Characterizing complex samples in two and three dimensions, Anal. Chem. 85 (2013) 610-639.
|
E.A. Jones, N.P. Lockyer, J.C. Vickerman, Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam, Anal. Chem. 80 (2008) 2125-2132.
|
N. Davies, D.E. Weibel, P. Blenkinsopp, et al., Development and experimental application of a gold liquid metal ion source, Appl. Surf. Sci. 203-204 (2003) 223-227.
|
R.G. Cooks, Z. Ouyang, Z. Takats, et al., Detection Technologies. Ambient mass spectrometry, Science 311 (2006) 1566-1570.
|
K. Chan, P. Lanthier, X. Liu, et al., MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix, Anal. Chim. Acta 639 (2009) 57-61.
|
Z. Takáts, J.M. Wiseman, R.G. Cooks, Ambient mass spectrometry using desorption electrospray ionization (DESI):Instrumentation, mechanisms and applications in forensics, chemistry, and biology, J. Mass Spectrom. 40 (2005) 1261-1275.
|
J. Hermann, H. Noels, W. Theelen, et al., Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging, Anal. Bioanal. Chem. 412 (2020) 1263-1275.
|
E.H. Seeley, S.R. Oppenheimer, D. Mi, et al., Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections, J. Am. Soc. Mass Spectrom. 19 (2008) 1069-1077.
|
Y. Chen, W. Tang, A. Gordon, et al., Development of an integrated tissue pretreatment protocol for enhanced MALDI MS imaging of drug distribution in the brain, J. Am. Soc. Mass Spectrom. 31 (2020) 1066-1073.
|
Y. Tanaka, M. Hirata, S. Shinonome, et al., Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity, Sci. Rep. 8 (2018), 343.
|
Š. Strnad, V. Pražienková, D. Sýkora, et al., The use of 1,5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders, Talanta 201 (2019) 364-372.
|
E.R. van Hove, D.F. Smith, L. Fornai, et al., An alternative paper based tissue washing method for mass spectrometry imaging:Localized washing and fragile tissue analysis, J. Am. Soc. Mass Spectrom. 22 (2011) 1885-1890.
|
H. Tanaka, M. Hirata, S. Shinonome, et al., Preclinical antitumor activity of S-222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2, Cancer Sci. 105 (2014) 1040-1048.
|
M. Liu, L. Tang, X. Liu, et al., An evidence-based review of related metabolites and metabolic network research on cerebral ischemia, Oxid. Med. Cell. Longev. 2016 (2016), 9162074.
|
M. Shariatgorji, A. Nilsson, P. Kallback, et al., Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines, J. Am. Soc. Mass Spectrom. 26 (2015) 934-939.
|
M. Shariatgorji, A. Nilsson, R.J. Goodwin, et al., Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections, Neuron 84 (2014) 697-707.
|
T.C. Rohner, D. Staab, M. Stoeckli, MALDI mass spectrometric imaging of biological tissue sections, Mech. Ageing Dev. 126 (2005) 177-185.
|
N. Kakuda, T. Miyasaka, N. Iwasaki, et al., Distinct deposition of amyloid-β species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry, Acta Neuropathol. Commun. 5 (2017), 73.
|
I. Kaya, D. Brinet, W. Michno, et al., Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer's disease, ACS Chem. Neurosci. 8 (2017) 2778-2790.
|
I. Kaya, D. Brinet, W. Michno, et al., Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer's disease mice (tgArcSwe) using MALDI imaging mass spectrometry, ACS Chem. Neurosci. 8 (2017) 347-355.
|
H. Hulme, E. Fridjonsdottir, H. Gunnarsdottir, et al., Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy, Neurobiol. Dis. 137 (2020), 104738.
|
H. Liu, R. Chen, J. Wang, et al., 1,5-diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia, Anal. Chem. 86 (2014) 10114-10121.
|
M. Irie, Y. Fujimura, M. Yamato, et al., Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model, Metabolomics 10 (2014) 473-483.
|
L.S. Eberlin, I. Norton, A.L. Dill, et al., Classifying human brain tumors by lipid imaging with mass spectrometry, Cancer Res. 72 (2012) 645-654.
|
L.S. Eberlin, I. Norton, D. Orringer, et al., Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors, Proc. Natl. Acad. Sci. U S A 110 (2013) 1611-1616.
|
H.M. Brown, V. Pirro, R.G. Cooks, From DESI to the MasSpec Pen:Ambient ionization mass spectrometry for tissue analysis and intrasurgical cancer diagnosis, Clin. Chem. 64 (2018) 628-630.
|
V. Pirro, L.S. Eberlin, P. Oliveri, et al., Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections, Analyst 137 (2012) 2374-2380.
|
J.A. Losman, W.G. Kaelin Jr., What a difference a hydroxyl makes:Mutant IDH, (R)-2-hydroxyglutarate, and cancer, Genes Dev. 27 (2013) 836-852.
|
L. Dang, D.W. White, S. Gross, et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature 462 (2009) 739-744.
|
S. Santagata, L.S. Eberlin, I. Norton, et al., Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery, Proc. Natl. Acad. Sci. U S A 111 (2014) 11121-11126.
|
C. Esteve, E.A. Tolner, R. Shyti, et al., Mass spectrometry imaging of amino neurotransmitters:A comparison of derivatization methods and application in mouse brain tissue, Metabolomics 12 (2016), 30.
|
A. Kleinridders, H.A. Ferris, M.L. Reyzer, et al., Regional differences in brain glucose metabolism determined by imaging mass spectrometry, Mol. Metab. 12 (2018) 113-121.
|
R.J. McCrimmon, C.M. Ryan, B.M. Frier, Diabetes and cognitive dysfunction, Lancet 379 (2012) 2291-2299.
|
V. Srikanth, A.J. Sinclair, F. Hill-Briggs, et al., Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities, Lancet Diabetes Endocrinol. 8 (2020) 535-545.
|
D.R. Bandura, V.I. Baranov, O.I. Ornatsky, et al., Mass cytometry:Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry, Anal. Chem. 81 (2009) 6813-6822.
|
C. Böttcher, S. Schlickeiser, M.A.M. Sneeboer, et al., Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry, Nat. Neurosci. 22 (2019) 78-90.
|
A.Z. Wang, J.A. Bowman-Kirigin, R. Desai, et al., Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response, Genome Med. 14 (2022), 49.
|
C. Park, G. Ponath, M. Levine-Ritterman, et al., The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions, Acta Neuropathol. Commun. 7 (2019), 130.
|
V. Ramaglia, S. Sheikh-Mohamed, K. Legg, et al., Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry, eLife 8 (2019), 48051.
|
D.W. Moon, Y.H. Park, S.Y. Lee, et al., Multiplex protein imaging with secondary ion mass spectrometry using metal oxide nanoparticle-conjugated antibodies, ACS Appl. Mater. Interfaces 12 (2020) 18056-18064.
|
J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol. 26 (2008) 1367-1372.
|
M. Holzlechner, S. Reitschmidt, S. Gruber, et al., Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging, Proteomics 16 (2016) 1742-1746.
|
H. Tsugawa, T. Cajka, T. Kind, et al., MS-DIAL:Data-independent MS/MS deconvolution for comprehensive metabolome analysis, Nat. Methods 12 (2015) 523-526.
|
A. Andersson, J. Bergenstrahle, M. Asp, et al., Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography, Commun. Biol. 3 (2020), 565.
|
X. Qiu, D.Y. Zhu, J. Yao, et al., Spateo:Multidimensional spatiotemporal modeling of single-cell spatial transcriptomics, bioRxiv. 2022. https://doi.org/10.1101/2022.12.07.519417.
|
H. Tsugawa, T. Cajka, T. Kind, et al.,. 49 (2021), e50.
|
R. Zeira, M. Land, A. Strzalkowski, et al., Alignment and integration of spatial transcriptomics data, Nat. Methods 19 (2022) 567-575.
|
J. Liao, J. Qian, Y. Fang, et al., De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution, Nat. Commun. 13 (2022), 6498.
|
Y. Hao, S. Hao, E. Andersen-Nissen, et al., Integrated analysis of multimodal single-cell data, Cell 184 (2021) 3573-3587.e29.
|
X. Qian, K.D. Harris, T. Hauling, et al., Probabilistic cell typing enables fine mapping of closely related cell types in situ, Nat. Methods 17 (2020) 101-106.
|
D. Sun, Z. Liu, T. Li, et al., STRIDE:Accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing, Nucleic Acids Res. 50 (2022), e42.
|
V. Svensson, S.A. Teichmann, O. Stegle, SpatialDE:Identification of spatially variable genes, Nat. Methods 15 (2018) 343-346.
|
S. Sun, J. Zhu, X. Zhou, Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies, Nat. Methods 17 (2020) 193-200.
|
D. Pham, X. Tan, J. Xu, et al., stLearn:Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues, bioRxiv. 2020. https://doi.org/10.1101/2020.05.31.125658.
|
V. Kleshchevnikov, A. Shmatko, E. Dann, et al., Cell2location maps fine-grained cell types in spatial transcriptomics, Nat. Biotechnol. 40 (2022) 661-671.
|
E.M. Holgersen, S. Gandhi, Y. Zhou, et al., Transcriptome-wide off-target effects of steric-blocking oligonucleotides, Nucleic Acid Ther. 31 (2021) 392-403.
|
Q. Zhu, S. Shah, R. Dries, et al., Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data, Nat. Biotechnol. 36 (2018) 1183-1190.
|
R. Dries, Q. Zhu, R. Dong, et al., Giotto:A toolbox for integrative analysis and visualization of spatial expression data, Genome Biol. 22 (2021), 78.
|
K.H. Tang, S. Li, A. Khodadadi-Jamayran, et al., Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC, Cancer Discov. 12 (2022) 47-61.
|
K.W. Govek, E.C. Troisi, Z. Miao, et al., Single-cell transcriptomic analysis of mIHC images via antigen mapping, Sci. Adv. 7 (2021), eabc5464.
|
X. Shao, C. Li, H. Yang, et al., Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk, Nat. Commun. 13 (2022), 4429.
|
C. Wang, D. Sun, X. Huang, et al., Integrative analyses of single-cell transcriptome and regulome using MAESTRO, Genome Biol. 21 (2020), 198.
|
H.J. Kim, Y. Lin, T.A. Geddes, et al., CiteFuse enables multi-modal analysis of CITE-seq data, Bioinformatics 36 (2020) 4137-4143.
|
A. Gayoso, Z. Steier, R. Lopez, et al., Joint probabilistic modeling of single-cell multi-omic data with totalVI, Nat. Methods 18 (2021) 272-282.
|
S. Jin, L. Zhang, Q. Nie, scAI:An unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles, Genome Biol. 21 (2020), 25.
|
R. Argelaguet, D. Arnol, D. Bredikhin, et al., MOFA+:A statistical framework for comprehensive integration of multi-modal single-cell data, Genome Biol. 21 (2020), 111.
|
X. Wang, Z. Sun, Y. Zhang, et al., BRE-SC:A bayesian random effects mixture model for joint clustering single cell multi-omics data, Nucleic Acids Res. 48 (2020) 5814-5824.
|
W. Liu, X. Liao, Z. Luo, et al., Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST, Nat. Commun. 14 (2023), 296.
|
K. Cao, X. Bai, Y. Hong, et al., Unsupervised topological alignment for single-cell multi-omics integration, Bioinformatics 36 (2020) i48-i56.
|
J.D. Welch, V. Kozareva, A. Ferreira, et al., Single-cell multi-omic integration compares and contrasts features of brain cell identity, Cell 177 (2019) 1873-1887.e17.
|
M. Stevens, A. Nanou, L. Terstappen, et al., StarDist image segmentation improves circulating tumor cell detection, Cancers (Basel) 14 (2022), 2916.
|
S. Mandal, V. Uhlmann, SplineDist:Automated cell segmentation with spline curves, bioRxiv. 2021. https://doi.org/10.1101/2020.10.27.357640.
|
C. Stringer, T. Wang, M. Michaelos, et al., Cellpose:A generalist algorithm for cellular segmentation, Nat. Methods 18 (2021) 100-106.
|
C.W. Grant, E.F. Barreto, R. Kumar, et al., Multi-omics characterization of early- and adult-onset major depressive disorder, J. Pers. Med. 12 (2022), 412.
|
S. Vickovic, B. Lötstedt, J. Klughammer, et al., SM-Omics is an automated platform for high-throughput spatial multi-omics, Nat. Commun. 13 (2022), 795.
|
V. Kumar, K. Ramnarayanan, R. Sundar, et al., Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer, Cancer Discov. 12 (2022) 670-691.
|
S. Prokop, K.R. Miller, S.R. Labra, et al., Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples, Acta Neuropathol. 138 (2019) 613-630.
|
M. Kaufmann, A.L. Schaupp, R. Sun, et al., Identification of early neurodegenerative pathways in progressive multiple sclerosis, Nat. Neurosci. 25 (2022) 944-955.
|
V.M. Ravi, P. Will, J. Kueckelhaus, et al., Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma, Cancer Cell 40 (2022) 639-655.e13.
|
A.K. Ottens, The methodology of neuroproteomics, Methods Mol. Biol. 566 (2009) 1-21.
|
H. Haas, P. Panula, The role of histamine and the tuberomamillary nucleus in the nervous system, Nat. Rev. Neurosci. 4 (2003) 121-130.
|
G.M. Shepherd, M. Raastad, Axonal varicosity distributions along parallel fibers:A new angle on a cerebellar circuit, Cerebellum 2 (2003) 110-113.
|
N.N. Foster, J. Barry, L. Korobkova, et al., The mouse cortico-basal ganglia-thalamic network, Nature 598 (2021) 188-194.
|
BRAIN Initiative Cell Census Network (BICCN), A multimodal cell census and atlas of the mammalian primary motor cortex, Nature 598 (2021) 86-102.
|
H. Peng, P. Xie, L. Liu, et al., Morphological diversity of single neurons in molecularly defined cell types, Nature 598 (2021) 174-181.
|
W. Yang, R. Yuste, In vivo imaging of neural activity, Nat. Methods 14 (2017) 349-359.
|
C. Grienberger, A. Konnerth, Imaging calcium in neurons, Neuron 73 (2012) 862-885.
|
W. Pei, T.B. Feyerabend, J. Rössler, et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo, Nature 548 (2017) 456-460.
|
X. Qian, H. Song, G.-L. Ming, Brain organoids:Advances, applications and challenges, Development 146 (2019).
|
K. Watanabe, D. Kamiya, A. Nishiyama, et al., Directed differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci. 8 (2005) 288-296.
|
K. Watanabe, M. Ueno, D. Kamiya, et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nat. Biotechnol. 25 (2007) 681-686.
|
B. Bakker, R.D.W. Vaes, M.R. Aberle, et al., Preparing ductal epithelial organoids for high-spatial-resolution molecular profiling using mass spectrometry imaging, Nat. Protoc. 17 (2022) 962-979.
|
M.L. Spruill, M. Maletic-Savatic, H. Martin, et al., Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging, Biochem. Pharmacol. 201 (2022), 115080.
|
M.K. Passarelli, A. Pirkl, R. Moellers, et al., The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power, Nat. Methods 14 (2017) 1175-1183.
|
M.T. Proetto, C.R. Anderton, D. Hu, et al., Cellular delivery of nanoparticles revealed with combined optical and isotopic nanoscopy, ACS Nano 10 (2016) 4046-4054.
|
V.J. Orphan, C.H. House, K.U. Hinrichs, et al., Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science 293 (2001) 484-487.
|