Citation: | Pan Shen, Zhi-Jie Bai, Lei Zhou, Ning-Ning Wang, Zhe-Xin Ni, De-Zhi Sun, Cong-Shu Huang, Yang-Yi Hu, Cheng-Rong Xiao, Wei Zhou, Bo-Li Zhang, Yue Gao. A Scd1-mediated metabolic alteration participates in liver responses to low-dose bavachin[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 806-816. doi: 10.1016/j.jpha.2023.03.010 |
R.J. Andrade, N. Chalasani, E.S. Björnsson, et al., Drug-induced liver injury, Nat. Rev. Dis. Primers 5 (2019), 58.
|
L. Gong, G. Wang, Q. Ma, et al., Novel insights into the effect of Xiaoyao San on corticosterone-induced hepatic steatosis: Inhibition of glucocorticoid receptor/perilipin-2 signaling pathway, Acupunct. Herb. Med. 2 (2022) 49-57.
|
B. Chopra, A.K. Dhingra, K.L. Dhar, Psoralea corylifolia L. (Buguchi)-Folklore to modern evidence: Review, Fitoterapia 90 (2013) 44-56.
|
F. Alam, G.N. Khan, M.H.H.B. Asad, Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review, Phytother. Res. 32 (2018) 597-615.
|
S.W. Nam, J.T. Baek, D.S. Lee, et al., A case of acute cholestatic hepatitis associated with the seeds of Psoralea corylifolia (Boh-gol-zhee), Clin. Toxicol. 43 (2005) 589-591.
|
W.I. Cheung, M.L. Tse, T. Ngan, et al., Liver injury associated with the use of Fructus Psoraleae (Bol-gol-zhee or Bu-gu-zhi) and its related proprietary medicine, Clin. Toxicol. 47 (2009) 683-685.
|
A. Li, M. Gao, N. Zhao, et al., Acute liver failure associated with Fructus Psoraleae: A case report and literature review, BMC Complement. Altern. Med. 19 (2019), 84.
|
J. Rong, Z. Xie, E. Chen, et al., Fructus Psoraleae-induced severe liver injury and treatment with two artificial liver support systems: A case series study, Ther. Apher. Dial. 24 (2020) 324-332.
|
W.J. Tsai, W.C. Hsin, C.C. Chen, Antiplatelet flavonoids from seeds of Psoralea corylifolia, J. Nat. Prod. 59 (1996) 671-672.
|
D. Wang, F. Li, Z. Jiang, Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids, Planta Med. 67 (2001) 748-749.
|
T. Takeda, M. Tsubaki, Y. Tomonari, et al., Bavachin induces the apoptosis of multiple myeloma cell lines by inhibiting the activation of nuclear factor kappa B and signal transducer and activator of transcription 3, Biomed. Pharmacother. 100 (2018) 486-494.
|
Y.L. Hung, S.C. Wang, K. Suzuki, et al., Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages, Phytomedicine 59 (2019), 152785.
|
C. Chen, Y.F. Shen, Y. Hu, et al., Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of psoralea corlifonia Lynn, Virus Res. 255 (2018) 24-35.
|
Y. Yang, X. Tang, F. Hao, et al., Bavachin induces apoptosis through mitochondrial regulated ER stress pathway in HepG2 cells, Biol. Pharm. Bull. 41 (2018) 198-207.
|
X. Wang, X. Lv, S. Li, et al., Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi), Toxicol. Appl. Pharmacol. 289 (2015) 70-78.
|
Y. Yang, G. Guo, W. Zhou, et al., Sestrin2 protects against bavachin induced ER stress through AMPK/mTORC1 signaling pathway in HepG2 cells, J. Pharmacol. Sci. 145 (2021) 175-186.
|
Y. Luo, X. Gao, L. Zou, et al., Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells, Oxid. Med. Cell. Longev. 2021 (2021), 1783485.
|
A. Iorga, L. Dara, N. Kaplowitz, Drug-induced liver injury: Cascade of events leading to cell death, apoptosis or necrosis, Int. J. Mol. Sci. 18 (2017), 1018.
|
N. Aizarani, A. Saviano, Sagar, et al., A human liver cell atlas reveals heterogeneity and epithelial progenitors, Nature 572 (2019) 199-204.
|
J.M. McFarland, B.R. Paolella, A. Warren, et al., Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action, Nat. Commun. 11 (2020), 4296.
|
W. Zhao, A. Dovas, E.F. Spinazzi, et al., Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq, Genome Med. 13 (2021), 82.
|
L.T. Haber, M.L. Dourson, B.C. Allen, et al., Benchmark dose (BMD) modeling: Current practice, issues, and challenges, Crit. Rev. Toxicol. 48 (2018) 387-415.
|
J.A. Davis, J.S. Gift, Q.J. Zhao, Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1, Toxicol. Appl. Pharmacol. 254 (2011) 181-191.
|
C.S. McGinnis, L.M. Murrow, Z.J. Gartner, DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors, Cell Syst. 8 (2019) 329-337.e4.
|
A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420.
|
T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive integration of single-cell data, Cell 177 (2019) 1888-1902.e21.
|
S. Nowotschin, M. Setty, Y. Kuo, et al., The emergent landscape of the mouse gut endoderm at single-cell resolution, Nature 569 (2019) 361-367.
|
M. Setty, V. Kiseliovas, J. Levine, et al., Characterization of cell fate probabilities in single-cell data with Palantir, Nat. Biotechnol. 37 (2019) 451-460.
|
D. van Dijk, R. Sharma, J. Nainys, et al., Recovering gene interactions from single-cell data using data diffusion, Cell 174 (2018) 716-729.e27.
|
T. Wu, E. Hu, S. Xu, et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, Innovation (Camb) 2 (2021), 100141.
|
S. Jin, C.F. Guerrero-Juarez, L. Zhang, et al., Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 12 (2021), 1088.
|
P. Banerjee, A.O. Eckert, A.K. Schrey, et al., ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018) W257-W263.
|
Z. Zhou, M. Xu, B. Gao, Hepatocytes: A key cell type for innate immunity, Cell. Mol. Immunol. 13 (2016) 301-315.
|
Y. Gao, Z. Wang, J. Tang, et al., New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions, Front. Med. 14 (2020) 68-80.
|
N. Qin, G. Xu, Y. Wang, et al., Bavachin enhances NLRP3 inflammasome activation induced by ATP or nigericin and causes idiosyncratic hepatotoxicity, Front. Med. 15 (2021) 594-607.
|
M. Pieters, A.S. Wolberg, Fibrinogen and fibrin: An illustrated review, Res. Pract. Thromb. Haemost. 3 (2019) 161-172.
|
F. Defendi, N.M. Thielens, G. Clavarino, et al., The immunopathology of complement proteins and innate immunity in autoimmune disease, Clin. Rev. Allergy Immunol. 58 (2020) 229-251.
|
B. Ghebrehiwet, A.P. Kaplan, K. Joseph, et al., The complement and contact activation systems: Partnership in pathogenesis beyond angioedema, Immunol. Rev. 274 (2016) 281-289.
|
M.B. Ponczek, High molecular weight kininogen: A review of the structural literature, Int. J. Mol. Sci. 22 (2021), 13370.
|
Z. Li, M. Berk, T.M. McIntyre, et al., Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: Role of stearoyl-CoA desaturase, J. Biol. Chem. 284 (2009) 5637-5644.
|
R.A. Igal, Stearoyl-CoA desaturase-1: A novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer, Carcinogenesis 31 (2010) 1509-1515.
|
E. Fabbrini, F. Magkos, Hepatic steatosis as a marker of metabolic dysfunction, Nutrients 7 (2015) 4995-5019.
|
F. Chen, Z. Mo, Q. Zhong, et al., Role of neurite outgrowth inhibitor B receptor in hepatic steatosis, Acta Histochem. 124 (2022), 151977.
|
H. Matsui, T. Yokoyama, K. Sekiguchi, et al., Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes, PLoS One 7 (2012), e33283.
|
M. Miyazaki, Y.C. Kim, J.M. Ntambi, A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis, J. Lipid Res. 42 (2001) 1018-1024.
|
F. Xiao, J. Deng, Y. Guo, et al., BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism, Sci. Signal. 9 (2016), ra50.
|
T. Iida, M. Ubukata, I. Mitani, et al., Discovery of potent liver-selective stearoyl-CoA desaturase-1 (SCD1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity, Eur. J. Med. Chem. 158 (2018) 832-852.
|
E. Schmid-Siegert, O. Stepushenko, G. Glauser, et al., Membranes as structural antioxidants: Recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids, J. Biol. Chem. 291 (2016) 13005-13013.
|
E. Dierge, E. Debock, C. Guilbaud, et al., Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33 (2021) 1701-1715.e5.
|
J. Mao, W. Liu, Y. Wang, Apolipoprotein A-I expression suppresses COX-2 expression by reducing reactive oxygen species in hepatocytes, Biochem. Biophys. Res. Commun. 454 (2014) 359-363.
|
H. Han, J.W. Cho, S. Lee, et al., TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions, Nucleic Acids Res. 46 (2018) D380-D386.
|
C. Cicchini, D. Filippini, S. Coen, et al., Snail controls differentiation of hepatocytes by repressing HNF4α expression, J. Cell. Physiol. 209 (2006) 230-238.
|
J.P. Babeu, F. Boudreau, Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks, World J. Gastroenterol. 20 (2014) 22-30.
|
D.H. Lee, S.H. Park, J. Ahn, et al., Mir214-3p and Hnf4a/Hnf4α reciprocally regulate Ulk1 expression and autophagy in nonalcoholic hepatic steatosis, Autophagy 17 (2021) 2415-2431.
|
C. Wu, S. Zhao, B. Yu, Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease, Biol. Rev. 90 (2015) 367-376.
|
P. Steneberg, A.G. Sykaras, F. Backlund, et al., Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance, J. Biol. Chem. 290 (2015) 19034-19043.
|
D.H. Ipsen, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease, Cell. Mol. Life Sci. 75 (2018) 3313-3327.
|
M.A. Lounis, K.F. Bergeron, M.S. Burhans, et al., Oleate activates SREBP-1 signaling activity in SCD1-deficient hepatocytes, Am. J. Physiol. Endocrinol. Metab. 313 (2017) E710-E720.
|
M. Mijiti, R. Mori, B. Huang, et al., Anti-obesity and hypocholesterolemic actions of protamine-derived peptide RPR (arg-pro-arg) and protamine in high-fat diet-induced C57BL/6J mice, Nutrients 13 (2021), 2501.
|
H. Bené, D. Lasky, J.M. Ntambi, Cloning and characterization of the human stearoyl-CoA desaturase gene promoter: Transcriptional activation by sterol regulatory element binding protein and repression by polyunsaturated fatty acids and cholesterol, Biochem. Biophys. Res. Commun. 284 (2001) 1194-1198.
|
L.M. Reid, A.S. Fiorino, S.H. Sigal, et al., Extracellular matrix gradients in the space of disse: Relevance to liver biology, Hepatology 15 (1992) 1198-1203.
|
J. Soikkeli, P. Podlasz, M. Yin, et al., Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth, Am. J. Pathol. 177 (2010) 387-403.
|
J. Shen, B. Cao, Y. Wang, et al., Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer, J. Exp. Clin. Cancer Res. 37 (2018) 1-17.
|
B. Anlar, A. Gunel-Ozcan, Tenascin-R: Role in the central nervous system, Int. J. Biochem. Cell Biol. 44 (2012) 1385-1389.
|
P. Pesheva, R. Probstmeier, The Yin and Yang of tenascin-R in CNS development and pathology, Prog. Neurobiol. 61 (2000) 465-493.
|
M. Deckner, T. Lindholm, S. Cullheim, et al., Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system, Exp. Neurol. 166 (2000) 350-362.
|
J. Reinhard, L. Roll, A. Faissner, Tenascins in retinal and optic nerve neurodegeneration, Front. Integr. Neurosci. 11 (2017), 30.
|
Y.L. Chua, P.R.B. Evora, A.C. Celotto, et al., Adaptation of bioassay to detect endothelium-derived relaxing factors from the canine atrial endocardium, Rev. Bras. Cir. Cardiovasc. 24 (2009) 225-232.
|
B.R. Carneiro, P.C.A. Pernambuco Filho, A.P. de Sousa Mesquita, et al., Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells, PLoS One 9 (2014), e116001.
|
N.K. Karamanos, Z. Piperigkou, A.D. Theocharis, et al., Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics, Chem. Rev. 118 (2018) 9152-9232.
|
J.O.S. Onyeisi, P.C. de Almeida Pernambuco Filho, A.P. de Sousa Mesquita, et al., Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: Syndecan-4 silencing and anoikis resistance, Int. J. Biochem. Cell Biol. 128 (2020), 105848.
|
W. de Nardo, P.M. Miotto, J. Bayliss, et al., Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism, Mol. Metab. 60 (2022), 101491.
|