Citation: | Jiayun Chen, Xueling He, Yunmeng Bai, Jing Liu, Yin Kwan Wong, Lulin Xie, Qian Zhang, Piao Luo, Peng Gao, Liwei Gu, Qiuyan Guo, Guangqing Cheng, Chen Wang, Jigang Wang. Single-cell transcriptome analysis reveals the regulatory effects of artesunate on splenic immune cells in polymicrobial sepsis[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 817-829. doi: 10.1016/j.jpha.2023.02.006 |
M. Singer, C.S. Deutschman, C.W. Seymour, et al., The third international consensus definitions for sepsis and septic shock (sepsis-3), JAMA 315 (2016) 801-810.
|
T. van der Poll, M. Shankar-Hari, W.J. Wiersinga, The immunology of sepsis, Immunity 54 (2021) 2450-2464.
|
R.S. Hotchkiss, G. Monneret, D. Payen, Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy, Nat. Rev. Immunol. 13 (2013) 862-874.
|
T. van der Poll, F.L. van de Veerdonk, B.P. Scicluna, et al., The immunopathology of sepsis and potential therapeutic targets, Nat. Rev. Immunol. 17 (2017) 407-420.
|
S.M. Lewis, A. Williams, S.C. Eisenbarth, Structure and function of the immune system in the spleen, Sci. Immunol. 4 (2019), eaau6085.
|
M. Altamura, L. Caradonna, L. Amati, et al., Splenectomy and sepsis: the role of the spleen in the immune-mediated bacterial clearance, Immunopharmacol. Immunotoxicol. 23 (2001) 153-161.
|
X. Mu, C. Wang, Artemisinins-a promising new treatment for systemic lupus erythematosus: A descriptive review, Curr. Rheumatol. Rep. 20 (2018), 55.
|
L. Hou, H. Huang, Immune suppressive properties of artemisinin family drugs, Pharmacol. Ther. 166 (2016) 123-127.
|
X. Tong, L. Chen, S.-J. He, et al., Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: Therapeutic effects and molecular mechanisms, Acta. Pharmacol. Sin. 43 (2022) 3055-3061.
|
T. Zhang, Y. Zhang, N. Jiang, et al., Dihydroartemisinin regulates the immune system by promotion of CD8+ T lymphocytes and suppression of B cell responses, Sci. China Life Sci. 63 (2020) 737-749.
|
T.-H. Cao, S.-G. Jin, D.-S. Fei, et al., Artesunate protects against sepsis-induced lung injury via heme oxygenase-1 modulation, Inflammation 39 (2016) 651-662.
|
E. Zhang, J. Wang, Q. Chen, et al., Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis, Gene 759 (2020), 144969.
|
S.-P. Lin, J.-X. Wei, J.-S. Hu, et al., Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in microglia, Acta Pharmacol. Sin. 42 (2021) 1069-1079.
|
E. Hedlund, Q. Deng, Single-cell RNA sequencing: Technical advancements and biological applications, Mol. Aspects Med. 59 (2018) 36-46.
|
M. Wen, G. Cai, J. Ye, et al., Single-cell transcriptomics reveals the alteration of peripheral blood mononuclear cells driven by sepsis, Ann. Transl. Med. 8 (2020), 125.
|
T. Wang, X. Zhang, Z. Liu, et al., Single-cell RNA sequencing reveals the sustained immune cell dysfunction in the pathogenesis of sepsis secondary to bacterial pneumonia, Genomics 113 (2021) 1219-1233.
|
R.-Q. Yao, Z.-X. Li, L.-X. Wang, et al., Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis, Theranostics 12 (2022) 4606-4628.
|
F.V. Sjaastad, I.J. Jensen, R.R. Berton, et al., Inducing experimental polymicrobial sepsis by cecal ligation and puncture, Curr. Protoc. Immunol. 131 (2020), e110.
|
S. Chen, Y. Zhou, Y. Chen, et al., fastp: An ultra-fast all-in-one FASTQ preprocessor, Bioinformatics 34 (2018) i884-i890.
|
T. Stuart, A. Butler, P. Hoffman, et al., Comprehensive integration of single-cell data, Cell 177 (2019) 1888-1902.e21.
|
C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386.
|
S. Jin, C.F. Guerrero-Juarez, L. Zhang, et al., Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 12 (2021), 1088.
|
G.Y. Song, C.S. Chung, I.H. Chaudry, et al., IL-4-induced activation of the Stat6 pathway contributes to the suppression of cell-mediated immunity and death in sepsis, Surgery 128 (2000) 133-138.
|
G.D. Gregory, S.S. Raju, S. Winandy, et al., Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE, J. Clin. Invest. 116 (2006) 1327-1336.
|
X. Qi, Y. Yu, R. Sun, et al., Identification and characterization of neutrophil heterogeneity in sepsis, Crit. Care 25 (2021), 50.
|
I.J. Jensen, F.V. Sjaastad, T.S. Griffith, et al., Sepsis-Induced T Cell Immunoparalysis: The ins and outs of impaired T cell immunity, J. Immunol. 200 (2018) 1543-1553.
|
V. Atsaves, V. Leventaki, G.Z. Rassidakis, et al., AP-1 transcription factors as regulators of immune responses in cancer, Cancers (Basel) 11 (2019), 1037.
|
C.A. Dinarello, Proinflammatory cytokines, Chest 118 (2000) 503-508.
|
M.J. Delano, P.A. Ward, Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? J. Clin. Invest. 126 (2016) 23-31.
|
D.B. Darden, X. Dong, M.A. Brusko, et al., A novel single cell RNA-seq analysis of non-myeloid circulating cells in late sepsis, Front. Immunol. 12 (2021), 696536.
|
X.-J. Wang, J. Zhuo, G.-H. Luo, et al., Androgen deprivation accelerates the prostatic urethra wound healing after thulium laser resection of the prostate by promoting re-epithelialization and regulating the macrophage polarization, Prostate 77(2017) 708-717.
|
B.-Y. Yang, G.-Y. Deng, R.-Z. Zhao, et al., Porous Se@SiO2 nanosphere-coated catheter accelerates prostatic urethra wound healing by modulating macrophage polarization through reactive oxygen species-NF-κB pathway inhibition, Acta Biomater. 88 (2019) 392-405.
|
S.F. Liu, A.B. Malik, NF-κB activation as a pathological mechanism of septic shock and inflammation, Am. J. Physiol. Lung Cell. Mol. Physiol. 290 (2006) L622-L645.
|
P.H.C. Leliefeld, C.M. Wessels, L.P.H. Leenen, et al., The role of neutrophils in immune dysfunction during severe inflammation, Crit. Care 20 (2016), 73.
|
C.C. Gray, B. Biron-Girard, M.E. Wakeley, et al., Negative Immune Checkpoint Protein, VISTA, Regulates the CD4+ Treg Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival, Front. Immunol. 13 (2022), 861670.
|
F. Venet, C.-S. Chung, G. Monneret, et al., Regulatory T cell populations in sepsis and trauma, J. Leukoc. Biol. 83 (2008) 523-535.
|
E.Y. Kim, H. Ner-Gaon, J. Varon, et al., Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells, J. Clin. Invest. 130 (2020) 3238-3252.
|
B.G. Chousterman, F.K. Swirski, Innate response activator B cells: Origins and functions, Int. Immunol. 27 (2015) 537-541.
|
P. Luo, Q. Zhang, T.-Y. Zhong, et al., Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect, Mil. Med. Res. 9 (2022), 22.
|
Q. Zhang, P. Luo, F. Xia, et al., Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis, Cell Chem. Biol. 29 (2022) 1248-1259.e6.
|