Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Christelle Machon, Frédéric Catez, Nicole Dalla Venezia, Floriane Vanhalle, Laetitia Guyot, Anne Vincent, Maxime Garcia, Béatrice Roy, Jean-Jacques Diaz, Jérôme Guitton. Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 77-87. doi: 10.1016/j.jpha.2020.04.001
Citation: Christelle Machon, Frédéric Catez, Nicole Dalla Venezia, Floriane Vanhalle, Laetitia Guyot, Anne Vincent, Maxime Garcia, Béatrice Roy, Jean-Jacques Diaz, Jérôme Guitton. Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 77-87. doi: 10.1016/j.jpha.2020.04.001

Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method

doi: 10.1016/j.jpha.2020.04.001
Funds:

This work was supported by Institut National Du Cancer (grant number 2018-131).

  • Received Date: Oct. 11, 2019
  • Accepted Date: Apr. 01, 2020
  • Rev Recd Date: Mar. 31, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • 5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU. The chromatographic separation was optimized on a porous graphitic carbon column allowing the analysis of the metabolites of 5-FU as well as endogenous nucleotides. The detection was performed on an Orbitrap® tandem mass spectrometer. Linearity of the method was verified in intracellular content and in RNA extracts. The limit of detection was equal to 12 pg injected on column for nucleoside metabolites of 5-FU and 150 pg injected on column for mono- and tri-phosphate nucleotide metabolites. Matrix effect was evaluated in cellular contents, DNA and RNA extracts for nucleoside and nucleotides metabolites. The method was successfully applied to i) measure the proportion of each anabolic metabolite of 5-FU in cellular contents, ii) follow the consequence of inhibition of enzymes on the endogenous nucleotide pools, iii) study the incorporation of metabolites of 5-FU into RNA and DNA, and iv) to determine the incorporation rate of 5-FUrd into 18 S and 28 S sub-units of rRNA.
  • loading
  • D.B. Longley, D.P. Harkin, P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer. 3 (2003) 330-338
    N. Tsesmetzis, C.B.J. Paulin, S.G. Rudd, et al., Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism, Cancers (Basel). 10 (2018) e10419
    T. Samuelsson, Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil, Nucl. Acids Res. 19 (1991) 6139-6144
    W.B. Parker, Y.C. Cheng, Metabolism and mechanism of action of 5-fluorouracil, Pharmacol. Ther. 48 (1990) 381-395
    G. Weckbecker, D.O. Keppler, Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells, Biochem. Pharmacol. 33 (1984) 2291-2298
    A. Prochazkova, S. Liu, H. Friess, et al., Determination of 5-fluorouracil and 5-fluoro-2’-deoxyuridine-5’-monophosphate in pancreatic cancer cell line and other biological materials using capillary electrophoresis, J. Chromatogr. A 916 (2001) 215-224
    H. Ishii, M. Shimada, H. Yamaguchi, et al., A simultaneous determination method for 5-fluorouracil and its metabolites in human plasma with linear range adjusted by in-source collision-induced dissociation using hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry, Biomed. Chromatogr. 30 (2016) 1882-1886
    M.J. Deenen, H. Rosing, M.J. Hillebrand, et al., Quantitative determination of capecitabine and its six metabolites in human plasma using liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 913-914 (2013) 30-40
    F. Casale, R. Canaparo, L. Serpe, et al., Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients, Pharmacol. Res. 50 (2004) 173-179
    P. Deng, C. Ji, X. Dai, et al., Simultaneous determination of capecitabine and its three nucleoside metabolites in human plasma by high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989 (2015) 71-79
    J.L. Holleran, J.L. Eiseman, R.A. Parise, et al., LC-MS/MS assay for the quantitation of FdCyd and its metabolites FdUrd and FU in human plasma, J. Pharmaceut. Biomed. 129 (2016) 359-366
    J. Ciccolini, L. Peillard, C. Aubert, et al., Monitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study, Fund. Clin. Pharmacol. 14 (2000) 147-154
    D. Carli, M. Honorat, S. Cohen, et al., Simultaneous quantification of 5-FU, 5-FUrd, 5-FdUrd, 5-FdUMP, dUMP and TMP in cultured cell models by LC-MS/MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (2009) 2937-2944
    Y. Tsume, C.J. Provoda, G.L. Amidon, The achievement of mass balance by simultaneous quantification of floxuridine prodrug, floxuridine, 5-fluorouracil, 5-dihydrouracil, α-fluoro-β-ureidopropionate, α-fluoro-β-alanine using LC-MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 (2011) 915-920
    W.R. Wrightson, S.R. Myers, S. Galandiuk, HPLC analysis of 5-FU and FdUMP in tissue and serum, Biochem. Biophys. Res. Commun. 216 (1995) 808-813
    E.J.B. Derissen, B.A.W. Jacobs, A.D.R. Huitema, et al., Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment, Brit. J. Clin. Pharmaco. 81 (2016) 949-957
    E.J.B. Derissen, M.J.X. Hillebrand, H. Rosing, et al., Development of an LC-MS/MS assay for the quantitative determination of the intracellular 5-fluorouracil nucleotides responsible for the anticancer effect of 5-fluorouracil, J. Pharmaceut. Biomed. 110 (2015) 58-66
    C. Benz, E. Cadman, Modulation of 5-fluorouracil metabolism and cytotoxicity by antimetabolite pretreatment in human colorectal adenocarcinoma HCT-8, Cancer Res. 41 (1981) 994-999
    G.J. Peters, E. Laurensse, A. Leyva, et al., Sensitivity of human, murine, and rat cells to 5-fluorouracil and 5’-deoxy-5-fluorouridine in relation to drug-metabolizing enzymes, Cancer Res. 46 (1986) 20-28
    M. Keniry, C. Benz, R.H. Shafer, et al., Noninvasive spectroscopic analysis of fluoropyrimidine metabolism in cultured tumor cells, Cancer Res. 46 (1986) 1754-1758
    A. el-Tahtawy, W. Wolf, In vivo measurements of intratumoral metabolism, modulation, and pharmacokinetics of 5-fluorouracil, using 19F nuclear magnetic resonance spectroscopy, Cancer Res. 51 (1991) 5806-5812
    G.J. Peters, P. Noordhuis, A. Komissarov, et al., Quantification of 5-fluorouracil incorporation into RNA of human and murine tumors as measured with a sensitive gas chromatography-mass spectrometry assay, Anal. Biochem. 231 (1995) 157-163
    Y.J.L. Kamm, G.J. Peters, W.E. Hull, et al., Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma, Brit. J. Cancer. 89 (2003) 754-762
    P. Noordhuis, U. Holwerda, C.L. Van der Wilt, et al., 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers, Ann. Oncol. 15 (2004) 1025-1032
    H.S. Pettersen, T. Visnes, C.B. Vagboe, et al., UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation, Nucl. Acids Res. 39 (2011) 8430-8444
    T. Ginsburg-Shmuel, M. Haas, M. Schumann, et al., 5-OMe-UDP is a potent and selective P2Y(6)-receptor agonist, J. Med. Chem. 53 (2010) 1673-1685
    W.-Y. Tsang, B.M. Wood, F.M. Wong, et al., Proton transfer from C-6 of uridine 5’-monophosphate catalyzed by orotidine 5’-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent, J. Am. Chem. Soc. 134 (2012) 14580-14594
    J. Beres, W.G. Bentrude, A. Kalman, et al., Synthesis, structure, and antitumor and antiviral activities of a series of 5-halouridine cyclic 3’,5’-monophosphates, J. Med. Chem. 29 (1986) 488-493
    B. Roy, I. Lefebvre, J.-Y. Puy, et al., A facile and effective synthesis of lamivudine 5′-diphosphate, Tetrahedron Lett. 52 (2011) 1250-1252
    P. Gripon, S. Rumin, S. Urban, et al. Infection of a human hepatoma cell line by hepatitis B virus, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 15655-15660
    E.P. Quinlivan, J.F. Gregory, DNA digestion to deoxyribonucleoside: a simplified one-step procedure, Anal. Biochem. 373 (2008) 383-385
    S. Belin, A. Beghin, E. Solano-Gonzalez, et al., Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells, PLoS ONE. 4 (2009) e7147
    C. Machon, L.P. Jordheim, J.-Y. Puy, et al., Fully validated assay for the quantification of endogenous nucleoside mono- and triphosphates using online extraction coupled with liquid chromatography-tandem mass spectrometry, Anal Bioanal Chem. 406 (2014) 2925-2941
    A.R. Van Rompay, M. Johansson, A. Karlsson, Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme, Mol. Pharmacol. 56 (1999) 562-569
    M.A. Gunther Sillero, F. Perez-Zuniga, J. Gomes, et al., Synthesis of FUDP-N-acetylglucosamine and FUDP-glucose in Saccharomyces cerevisiae cells treated with 5-fluorouracil, FEMS Yeast Res. 8 (2008) 257-265
    R. Kanamaru, H. Kakuta, T. Sato, et al., The inhibitory effects of 5-fluorouracil on the metabolism of preribosomal and ribosomal RNA in L-1210 cells in vitro, Cancer Chemother. Pharmacol. 17 (1986) 43-46
    D.C. Eichler, N. Craig, Processing of eukaryotic ribosomal RNA, Prog. Nucleic Acid Res. Mol. Biol. 49 (1994) 197-239
    M. Charette, M.W. Gray, Pseudouridine in RNA: what, where, how, and why, IUBMB Life. 49 (2000) 341-351
    M. Hengesbach, F. Voigts-Hoffmann, B. Hofmann, et al., Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET, RNA. 16 (2010) 610-620
    M. Li, Z.-G. Cui, S.A. Zakki, et al., Aluminum chloride causes 5-fluorouracil resistance in hepatocellular carcinoma HepG2 cells, J. Cell. Physiol. 234 (2019) 20249-20265
    M.G. Francipane, D. Bulanin, E. Lagasse, Establishment and Characterization of 5-Fluorouracil-Resistant Human Colorectal Cancer Stem-Like Cells: Tumor Dynamics under Selection Pressure, Int J Mol Sci. 20 (2019) pii:E1817
    A. Sakatani, F. Sonohara, A. Goel, Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells, Carcinogenesis. 40 (2019) 422-431
    T.C. Humphrey, Identifying new targets for cancer drug 5’-fluorouracil, Cell Cycle. 14 (2015) 1353
    M. Jung, G. Berger, U. Pohlen, et al., Simultaneous determination of 5-fluorouracil and its active metabolites in serum and tissue by high-performance liquid chromatography, J. Chromatogr. B Biomed. Sci. Appl. 702 (1997) 193-202
    J.M. Joulia, F. Pinguet, P.Y. Grosse, et al., Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: application to a pharmacokinetic study, J. Chromatogr. B Biomed. Sci. Appl. 692 (1997) 427-435
    R.S. Jansen, H. Rosing, J.H.M. Schellens, et al., Retention studies of 2’-2’-difluorodeoxycytidine and 2’-2’-difluorodeoxyuridine nucleosides and nucleotides on porous graphitic carbon: development of a liquid chromatography-tandem mass spectrometry method, J Chromatogr A. 1216 (2009) 3168-3174
    R.S. Jansen, H. Rosing, J.H.M. Schellens, et al., Simultaneous quantification of 2’,2’-difluorodeoxycytidine and 2’,2’-difluorodeoxyuridine nucleosides and nucleotides in white blood cells using porous graphitic carbon chromatography coupled with tandem mass spectrometry, Rapid Commun. Mass Spectrom. 23 (2009) 3040-3050
    J. Byun, J.P. Henderson, J.W. Heinecke, Identification and quantification of mutagenic halogenated cytosines by gas chromatography, fast atom bombardment, and electrospray ionization tandem mass spectrometry, Anal. Biochem. 317 (2003) 201-209
    C.-H. Hsu, J.-Y. Liou, G.E. Dutschman, et al., Phosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium, Mol. Pharmacol. 67 (2005) 806-814
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (65) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return