2021 Vol. 11, No. 1

Review paper
Towards wearable and implantable continuous drug monitoring: A review
Sumin Bian, Bowen Zhu, Guoguang Rong, Mohamad Sawan
2021, 11(1): 1-14. doi: 10.1016/j.jpha.2020.08.001
Abstract:
Continuous drug monitoring is a promising alternative to current therapeutic drug monitoring strategies and has a strong potential to reshape our understanding of pharmacokinetic variability and to improve individualised therapy. This review highlights recent advances in biosensing technologies that support continuous drug monitoring in real time. We focus primarily on aptamer-based biosensors, wearable and implantable devices. Emphasis is given to the approaches employed in constructing biosensors. We pay attention to sensors’ biocompatibility, calibration performance, long-term characteristics stability and measurement quality. Last, we discuss the current challenges and issues to be addressed in continuous drug monitoring to make it a promising, future tool for individualised therapy. The ongoing efforts are expected to result in fully integrated implantable drug biosensing technology. Thus, we may anticipate an era of advanced healthcare in which wearable and implantable biochips will automatically adjust drug dosing in response to patient health conditions, thus enabling the management of diseases and enhancing individualised therapy.
Analytical methodologies for sensing catechol-O-methyltransferase activity and their applications
Fang-Yuan Wang, Ping Wang, Dong-Fang Zhao, Frank J. Gonzalez, Yu-Fan Fan, Yang-Liu Xia, Guang-Bo Ge, Ling Yang
2021, 11(1): 15-27. doi: 10.1016/j.jpha.2020.03.012
Abstract:
Mammalian catechol-O-methyltransferases (COMT) are an important class of conjugative enzymes, which play a key role in the metabolism and inactivation of catechol neurotransmitters, catechol estrogens and a wide range of endobiotics and xenobiotics that bear the catechol group. Currently, COMT inhibitors are used in combination with levodopa for the treatment of Parkinson’s disease in clinical practice. The crucial role of COMT in human health has raised great interest in the development of more practical assays for highly selective and sensitive detection of COMT activity in real samples, as well as for rapid screening and characterization of COMT inhibitors as drug candidates. This review summarizes recent advances in analytical methodologies for sensing COMT activity and their applications. Several lists of biochemical assays for measuring COMT activity, including the probe substrates, along with their analytical conditions and kinetic parameters, are presented. Finally, the challenges and future perspectives in the field, such as visualization of COMT activity in vivo and in situ, are highlighted. Collectively, this review article overviews the practical assays for measuring COMT activities in complex biological samples, which will strongly facilitate the investigations on the relevance of COMT to human diseases and promote the discovery of COMT inhibitors via high-throughput screening.
Applications and challenges of low temperature plasma in pharmaceutical field
Lingge Gao, Xingmin Shi, Xili Wu
2021, 11(1): 28-36. doi: 10.1016/j.jpha.2020.05.001
Abstract:
Low temperature plasma (LTP) technology has shown an outstanding application value in the pharmaceutical filed in recent ten years. This paper reviews the research advances in LTP, including its effects on enhancing or inhibiting drug activity, its combined use with drugs to treat cancers, its effects on the improvement of drug delivery system, its use in preparation of new inactivated virus vaccines, its use with mass spectrometry for rapid detection of drug quality, and the anti-tumor and sterilization effects of plasma-activated liquids. The paper also analyzes the challenges of LTP in the pharmaceutical filed, hoping to promote related research.
Original article
Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion
Barbara Bojko, Nikita Looby, Mariola Olkowicz, Anna Roszkowska, Bogumiła Kupcewicz, Pedro Reck dos Santos, Khaled Ramadan, Shaf Keshavjee, Thomas K. Waddell, German Gómez-Ríos, Marcos Tascon, Krzysztof Goryński, Marcelo Cypel, Janusz Pawliszyn
2021, 11(1): 37-47. doi: 10.1016/j.jpha.2020.08.011
Abstract:
Development of a novel in vivo lung perfusion (IVLP) procedure allows localized delivery of high-dose doxorubicin (DOX) for targeting residual micrometastatic disease in the lungs. However, DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window. A small dimension nitinol wire coated with a sorbent of biocompatible morphology (Bio-SPME) has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites. The in vivo Bio-SPME-IVLP experiments were performed on pig model over various (150 and 225 mg/m2) drug doses, and during human clinical trial. Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL (respectively) dose of DOX during a 3-h IVLP. In both pig and human cases, DOX tissue levels presented similar trends during IVLP. Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure. In addition to DOX levels, Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening, providing information about lung status during drug administration. Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach. Bio-SPME also extracted various endogenous molecules, thus providing a real-time snapshot of the physiology of the cells, which might assist in the tailoring of personalized treatment strategy.
Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing
N. Dhanalakshmi, T. Priya, S. Thennarasu, S. Sivanesan, N. Thinakaran
2021, 11(1): 48-56. doi: 10.1016/j.jpha.2020.02.001
Abstract:
A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.52 V). Under controlled experimental parameters, the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM. The detection limit and sensitivity were calculated as 1.8 nM and 0.2 μA/μM·cm2, respectively. Moreover, it offered excellent selectivity, reproducibility, and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration. Finally, the reported sensor was successfully employed to the direct determination of piroxicam in practical samples.
Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug
Sana Ansari, M. Shahnawaze Ansari, Soami P. Satsangee, Rajeev Jain
2021, 11(1): 57-67. doi: 10.1016/j.jpha.2020.03.013
Abstract:
In the present work, a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nanocomposite. The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD, FESEM, EDAX, HRTEM and XPS techniques. The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them. Bi2O3/ZnO nanocomposite based glassy carbon electrode (GCE) was utilized for sensitive voltammetric detection of an anti-biotic drug (balofloxacin). The modification amplified the electroactive surface area of the sensor, thus providing more sites for oxidation of analyte. Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation. The current exhibited a wide linear response in concentration range of 150–1000 nM and detection limit of 40.5 nM was attained. The modified electrode offered advantages in terms of simplicity of preparation, fair stability (RSD 1.45%), appreciable reproducibility (RSD 2.03%) and selectivity. The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%, respectively.
Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry
Kyung-Hee Yoo, Da-Hee Park, A.M. Abd El-Aty, Seong-Kwan Kim, Hae-Ni Jung, Da-Hye Jeong, Hee-Jung Cho, Ahmet Hacimüftüoğlu, Jae-Han Shim, Ji Hoon Jeong, Ho-Chul Shin
2021, 11(1): 68-76. doi: 10.1016/j.jpha.2020.03.008
Abstract:
In this study, we developed a simple screening procedure for the determination of 18 anthelmintics (including benzimidazoles, macrocyclic lactones, salicylanilides, substituted phenols, tetrahydropyrimidines, and imidazothiazoles) in five animal-derived food matrices (chicken muscle, pork, beef, milk, and egg) using liquid chromatography-tandem mass spectrometry. Analytes were extracted using acetonitrile/1% acetic acid (milk and egg) and acetonitrile/1% acetic acid with 0.5 mL of distilled water (chicken muscle, pork, and beef), and purified using saturated n-hexane/acetonitrile. A reversed-phase analytical column and a mobile phase consisting of (A) 10 mM ammonium formate in distilled water and (B) methanol were used to achieve optimal chromatographic separation. Matrix-matched standard calibration curves (R≥0.9752) were obtained for concentration equivalent to ×1/2, ×1, ×2, ×3, ×4, and ×5 fold the maximum residue limit (MRL) stipulated by the Korean Ministry of Food and Drug Safety. Recoveries of 61.2–118.4%, with relative standard deviations (RSDs) of ≤19.9% (intraday and interday), were obtained for each sample at three spiking concentrations (×1/2, ×1, and ×2 the MRL values). Limits of detection, limits of quantification, and matrix effects were 0.02–5.5 μg/kg, 0.06–10 μg/kg, and −98.8 to 13.9% (at 20 μg/kg), respectively. In five samples of each food matrix (chicken muscle, pork, beef, milk, and egg) purchased from large retailers in Seoul that were tested, none of the target analytes were detected. It has therefore been shown that this protocol is adaptable, accurate, and precise for the quantification of anthelmintic residues in foods of animal origin.
Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method
Christelle Machon, Frédéric Catez, Nicole Dalla Venezia, Floriane Vanhalle, Laetitia Guyot, Anne Vincent, Maxime Garcia, Béatrice Roy, Jean-Jacques Diaz, Jérôme Guitton
2021, 11(1): 77-87. doi: 10.1016/j.jpha.2020.04.001
Abstract:
5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU. The chromatographic separation was optimized on a porous graphitic carbon column allowing the analysis of the metabolites of 5-FU as well as endogenous nucleotides. The detection was performed on an Orbitrap® tandem mass spectrometer. Linearity of the method was verified in intracellular content and in RNA extracts. The limit of detection was equal to 12 pg injected on column for nucleoside metabolites of 5-FU and 150 pg injected on column for mono- and tri-phosphate nucleotide metabolites. Matrix effect was evaluated in cellular contents, DNA and RNA extracts for nucleoside and nucleotides metabolites. The method was successfully applied to i) measure the proportion of each anabolic metabolite of 5-FU in cellular contents, ii) follow the consequence of inhibition of enzymes on the endogenous nucleotide pools, iii) study the incorporation of metabolites of 5-FU into RNA and DNA, and iv) to determine the incorporation rate of 5-FUrd into 18 S and 28 S sub-units of rRNA.
An ultra-robust fingerprinting method for quality assessment of traditional Chinese medicine using multiple reaction monitoring mass spectrometry
Zhenhao Li, Xiaohui Zhang, Jie Liao, Xiaohui Fan, Yiyu Cheng
2021, 11(1): 88-95. doi: 10.1016/j.jpha.2020.01.003
Abstract:
Chromatographic fingerprinting has been perceived as an essential tool for assessing quality and chemical equivalence of traditional Chinese medicine. However, this pattern-oriented approach still has some weak points in terms of chemical coverage and robustness. In this work, we proposed a multiple reaction monitoring (MRM)-based fingerprinting method in which approximately 100 constituents were simultaneously detected for quality assessment. The derivative MRM approach was employed to rapidly design MRM transitions independent of chemical standards, based on which the large-scale fingerprinting method was efficiently established. This approach was exemplified on QiShenYiQi Pill (QSYQ), a traditional Chinese medicine-derived drug product, and its robustness was systematically evaluated by four indices: clustering analysis by principal component analysis, similarity analysis by the congruence coefficient, the number of separated peaks, and the peak area proportion of separated peaks. Compared with conventional ultraviolet-based fingerprints, the MRM fingerprints provided not only better discriminatory capacity for the tested normal/abnormal QSYQ samples, but also higher robustness under different chromatographic conditions (i.e., flow rate, apparent pH, column temperature, and column). The result also showed for such large-scale fingerprints including a large number of peaks, the angle cosine measure after min-max normalization was more suitable for setting a decision criterion than the unnormalized algorithm. This proof-of-concept application gives evidence that combining MRM technique with proper similarity analysis metrices can provide a highly sensitive, robust and comprehensive analytical approach for quality assessment of traditional Chinese medicine.
Comprehensive metabolic profiling of Alismatis Rhizoma triterpenes in rats based on characteristic ions and a triterpene database
Lu Wang, Sen Li, Jiaxin Li, Zhongzhe Cheng, Yulin Feng, Hui Ouyang, Zhifeng Du, Hongliang Jiang
2021, 11(1): 96-107. doi: 10.1016/j.jpha.2020.03.010
Abstract:
Alismatis Rhizoma (AR) is widely used in Chinese medicine, and its major bioactive components, triterpenes, reportedly possess various pharmacological activities. Therefore, it is very important to study the metabolism of triterpenes in vivo. However, the metabolism of AR triterpene extract has not been comprehensively elucidated due to its complex chemical components and metabolic pathways. In this study, an ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry method, which was based on the characteristic ions from an established database of known triterpenes, was used to analyze the major metabolites in rats following the oral administration of Alismatis Rhizoma extracts (ARE). As a result, a total of 233 constituents, with 85 prototype compounds and 148 metabolites, were identified for the first time. Hydrogenation, oxidation, sulfate and glucuronidation conjugation were the major metabolic pathways for triterpenes in AR. In addition, the mutual in vivo transformation of known ARE triterpenes was discovered and confirmed for the first time. Those results provide comprehensive insights into the metabolism of AR in vivo, which will be useful for future studies on its pharmacodynamics and pharmacokinetics. Moreover, this established strategy may be useful in metabolic studies of similar compounds.
Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines
Marziyeh Shalchi Tousi, Houri Sepehri, Sepideh Khoee, Mahdi Moridi Farimani, Ladan Delphi, Fariba Mansourizadeh
2021, 11(1): 108-121. doi: 10.1016/j.jpha.2020.04.002
Abstract:
Many studies have so far confirmed the efficiency of phytochemicals in the treatment of prostate cancer. Eupatorin, a flavonoid with a wide range of phytomedical activities, suppresses proliferation of and induces apoptosis of multiple cancer cell lines. However, low solubility, poor bioavailability, and rapid degradation limit its efficacy. The aim of our study was to evaluate whether the use of mPEG-b-poly (lactic-co-glycolic) acid (PLGA) coated iron oxide nanoparticles as a carrier could enhance the therapeutic efficacy of eupatorin in DU-145 and LNcaP human prostate cancer cell lines. Nanoparticles were prepared by the co-precipitation method and were fully characterized for morphology, surface charge, particle size, drug loading, encapsulation efficiency and in vitro drug-release profile. The inhibitory effect of nanoparticles on cell viability was evaluated by MTT test. Apoptosis was then determined by Hoechest staining, cell cycle analysis, NO production, annexin/propidium iodide (PI) assay, and Western blotting. The results indicated that eupatorin was successfully entrapped in Fe3O4@mPEG-b-PLGA nanoparticles with an efficacy of (90.99 ± 2.1)%. The nanoparticle’s size was around (58.5 ± 4) nm with a negative surface charge [(−34.16 ± 1.3) mV]. In vitro release investigation showed a 30% initial burst release of eupatorin in 24 h, followed by sustained release over 200 h. The MTT assay indicated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles exhibited a significant decrease in the growth rate of DU-145 and LNcaP cells and their IC50 concentrations were 100 μM and 75 μM, respectively. Next, apoptosis was confirmed by nuclear condensation, enhancement of cell population in the sub-G1 phase and increased NO level. Annexin/PI analysis demonstrated that eupatorin-loaded Fe3O4@mPEG-b-PLGA nanoparticles could increase apoptosis and decrease necrosis frequency. Finally, Western blotting analysis confirmed these results and showed that Bax/Bcl-2 ratio and the cleaved caspase-3 level were up-regulated by the designing nanoparticles. Encapsulation of eupatorin in Fe3O4@mPEG-b-PLGA nanoparticles increased its anticancer effects in prostate cancer cell lines as compared to free eupatorin. Based on these results, this formulation can provide a sustained eupatorin-delivery system for cancer treatment with the drug remaining active at a significantly lower dose, making it a suitable candidate for pharmacological uses.
Short communication
Drug target discovery by magnetic nanoparticles coupled mass spectrometry
Dandan Xia, Baoling Liu, Xiaowei Xu, Ya Ding, Qiuling Zheng
2021, 11(1): 122-127. doi: 10.1016/j.jpha.2020.02.002
Abstract:
Drug target discovery is the basis of drug screening. It elucidates the cause of disease and the mechanism of drug action, which is the essential of drug innovation. Target discovery performed in biological systems is complicated as proteins are in low abundance and endogenous compounds may interfere with drug binding. Therefore, methods to track drug-target interactions in biological matrices are urgently required. In this work, a Fe3O4 nanoparticle-based approach was developed for drug-target screening in biofluids. A known ligand-protein complex was selected as a principle-to-proof example to validate the feasibility. After incubation in cell lysates, ligand-modified Fe3O4 nanoparticles bound to the target protein and formed complexes that were separated from the lysates by a magnet for further analysis. The large surface-to-volume ratio of the nanoparticles provides more active sites for the modification of chemical drugs. It enhances the opportunity for ligand-protein interactions, which is beneficial for capturing target proteins, especially for those with low abundance. Additionally, a one-step magnetic separation simplifies the pre-processing of ligand-protein complexes, so it effectively reduces the endogenous interference. Therefore, the present nanoparticle-based approach has the potential to be used for drug target screening in biological systems.