Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Sana Ansari, M. Shahnawaze Ansari, Soami P. Satsangee, Rajeev Jain. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 57-67. doi: 10.1016/j.jpha.2020.03.013
Citation: Sana Ansari, M. Shahnawaze Ansari, Soami P. Satsangee, Rajeev Jain. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 57-67. doi: 10.1016/j.jpha.2020.03.013

Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug

doi: 10.1016/j.jpha.2020.03.013
Funds:

The authors express their gratitude to the University Grants Commission (UGC) for providing Maulana Azad National Fellowship for minority students.

  • Received Date: Nov. 11, 2019
  • Accepted Date: Mar. 30, 2020
  • Rev Recd Date: Mar. 27, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • In the present work, a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nanocomposite. The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD, FESEM, EDAX, HRTEM and XPS techniques. The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them. Bi2O3/ZnO nanocomposite based glassy carbon electrode (GCE) was utilized for sensitive voltammetric detection of an anti-biotic drug (balofloxacin). The modification amplified the electroactive surface area of the sensor, thus providing more sites for oxidation of analyte. Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation. The current exhibited a wide linear response in concentration range of 150–1000 nM and detection limit of 40.5 nM was attained. The modified electrode offered advantages in terms of simplicity of preparation, fair stability (RSD 1.45%), appreciable reproducibility (RSD 2.03%) and selectivity. The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%, respectively.
  • loading
  • G. Schmuck, A. Schurmann, G. Schluter, Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model, Antimicrob. Agents Ch. 42 (1998) 1831-1836
    Y. Ni, Y. Wang, S. Kokot, Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics, Talanta 69 (2006) 216-225
    Z. Bian, Y. Tian, Z. Zhang, et al., High performance liquid chromatography-electrospray ionization mass spectrometric determination of balofloxacin in human plasma and its pharmacokinetics, J. Chromatogr. B 850 (2007) 68-73
    T. Nakagawa, M. Ishigai, Y. Hiramatsu, et al., Determination of the new fluoroquinolone balofloxacin and its metabolites in biological fluids by high performance liquid chromatography, Arznei. - Forschung 45 (1995) 716-718
    J. Deng, Z. Xiao, H. Zhang, et al., Determination of balofloxacin in human plasma by HPLC with solid-phase extraction, Se pu= Chinese J. Chromatogr. 25 (2007) 942
    N. Nyola, J. Govindasamy, Estimation of balofloxacin in active pharmaceutical ingredient and pharmaceutical formulations by different analytical methods, Nov. Sci. Int. J. Pharmaceut. Sci. 1 (2012) 425-429
    Y. Sui, T. Guo, J.-w. Zhang, et al., Determination of balofloxacin in human urine by RP-HPLC with fluorescence detection, J. Shenyang Pharmaceut. Univ. 24 (2007) 691-694
    M. Punam, B. Vandana, Development and Validation of Analytical Methods for Estimation of Balofloxacin in Bulk and Pharmaceutical Dosage Forms, Int. J. PharmTech. Res. 3 (2011) 1938-1941
    S.A. Reddy, K.C. Sekhar, Development and validation of analytical method for estimation of balofloxacin in bulk and pharmaceutical dosage form, J. Global Trends Pharmaceut. Sci. 3 (2012) 647-655
    R. Jain, V.K. Gupta, N. Jadon, et al., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem. 407 (2010) 79-88
    M.L. Yola, V.K. Gupta, T. Eren, et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta 120 (2014) 204-211
    R.N. Goyal, V.K. Gupta, A. Sangal, et al., Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode, Electroanal. 17 (2005) 2217-2223
    H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interf. Sci. 560 (2020) 208-212
    T. Bancic, J. Bitenc, K. Pirnat, et al., Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery, J. Power Sources 395 (2018) 25-30
    M. Govindasamy, S.-M. Chen, V. Mani, et al., Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk, J. Colloid Interf. Sci. 485 (2017) 129-136
    V. Mani, M. Govindasamy, S.-M. Chen, et al., Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers, Microchim. Acta 183 (2016) 2267-2275
    M. Miraki, H. Karimi-Maleh, M.A. Taher, et al., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq. 278 (2019) 672-676
    E. Tammari, A. Nezhadali, S. Lotfi, et al., Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples, Sensor. Actuat. B-Chem. 241 (2017) 879-886
    S. Ansari, M.S. Ansari, H. Devnani, et al., CeO2/g-C3N4 nanocomposite: A perspective for electrochemical sensing of anti-depressant drug, Sensor. Actuat. B-Chem. 273 (2018) 1226-1236
    H. Devnani, S. Ansari, S.P. Satsangee, et al., ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine, Mater. Today Chem. 4 (2017) 17-25
    S. Ansari, M.S. Ansari, S. Satsangee, et al., WO3 decorated graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug, Anal. Chim. Acta 1046 (2019) 99-109
    M. Moyo, L.R. Florence, J.O. Okonkwo, Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode, Sensor. Actuat. B-Chem. 209 (2015) 898-905
    J. Wang, X.W. Sun, A. Wei, et al., Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006) 233106
    Z. Karami, I. Sheikhshoaie, rGO/ZnO Nanocomposite Modified Carbon Paste Electrode as Sensor for Tyrosine Analysis, Anal. Bioanal. Electrochem. 9 (2017) 834-840
    H. Karimi-Maleh, I. Sheikhshoaie, A. Samadzadeh, Simultaneous electrochemical determination of levodopa and piroxicam using a glassy carbon electrode modified with a ZnO-Pd/CNT nanocomposite, RSC Adv. 8 (2018) 26707-26712
    P. Balasubramanian, R. Settu, S.-M. Chen, et al., Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite, Microchim. Acta 185 (2018) 396
    H. Lv, G. Ji, Z. Yang, et al., Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO, J. Colloid Interf. Sci. 450 (2015) 381-387
    S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C 116 (2012) 26306-26312
    S. Yi, X. Yue, D. Xu, et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions, New J. Chem. 39 (2015) 2917-2924
    L. Li, B. Yan, BiVO4/Bi2O3 submicrometer sphere composite: microstructure and photocatalytic activity under visible-light irradiation, J. Alloy. Compd. 476 (2009) 624-628
    S. Manavalan, U. Rajaji, S.-M. Chen, et al., Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum, Ultrason. Sonochem. 51 (2019) 103-110
    I. Svancara, C. Prior, S.B. Hocevar, et al., A decade with bismuth-based electrodes in electroanalysis, Electroanal. 22 (2010) 1405-1420
    N.L. Teradal, J. Seetharamappa, Bulk Modification of Carbon Paste Electrode with Bi2O3 Nanoparticles and Its Application as an Electrochemical Sensor for Selective Sensing of Anti-HIV Drug Nevirapine, Electroanal. 27 (2015) 2007-2016
    E.S. Sa, P.S. da Silva, C.L. Jost, et al., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sensor. Actuat. B-Chem. 209 (2015) 423-430
    G. Bia, L. Borgnino, P.I. Ortiz, et al., Multivariate optimization of square wave voltammetry using bismuth film electrode to determine atrazine, Sensor. Actuat. B-Chem. 203 (2014) 396-405
    D. Asbahr, L.C.S. Figueiredo-Filho, F.C. Vicentini, et al., Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of methotrexate utilizing bismuth film modified electrodes, Sensor. Actuat. B-Chem. 188 (2013) 334-339
    S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples, Sensor. Actuat. B-Chem. 255 (2018) 1462-1470
    A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982
    J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11 (1978) 102-113
    R. S, J. Thomas, Solar light driven photocatalytic degradation of organic pollutants using ZnO nanorods coupled with photosensitive molecules, J. Environ. Chem. Eng. 5 (2017) 4239-4250
    M. Stan, A. Popa, D. Toloman, et al., Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum, Acta Metall. Sin.-Engl. 29 (2016) 228-236
    A. Hezam, K. Namratha, Q.A. Drmosh, et al., Synthesis of heterostructured Bi2O3-CeO2-ZnO photocatalyst with enhanced sunlight photocatalytic activity, Ceram. Int. 43 (2017) 5292-5301
    J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy, Phys. Electron. (1995) 230-232
    S. Kang, R.C. Pawar, Y. Pyo, et al., Size-controlled BiOCl-RGO composites having enhanced photodegradative properties, J. Exp. Nanosci. 11 (2016) 259-275
    A. Hashemi, A. Bahari, Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s, Curr. Appl. Phys. 18 (2018) 1546-1552
    A. Hashemi, A. Bahari, S. Ghasemi, Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor, J. Electron. Mater. 47 (2018) 3717-3726
    J. Zhu, S. Wang, J. Wang, et al., Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots, Appl. Catal. B-Environ. 102 (2011) 120-125
    S. Yi, X. Yue, D. Xu, et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions, New J. Chem. 39 (2015) 2917-2924
    H. Gnayem, Y. Sasson, Nanostructured 3D Sunflower-like Bismuth Doped BiOClxBr1-x Solid Solutions with Enhanced Visible Light Photocatalytic Activity as a Remarkably Efficient Technology for Water Purification, J. Phys. Chem. C 119 (2015) 19201-19209
    A.J. Bard, L.R. Faulkner, Electrochemical methods: principles and applications, Electrochemical Methods: Principles and Applications (2001) 386-428
    J. Tashkhourian, B. Hemmateenejad, H. Beigizadeh, et al., ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques, J. Electroanal. Chem. 714-715 (2014) 103-108
    Y. Wei, M. Li, S. Jiao, et al., Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously, Electrochim. Acta 52 (2006) 766-772
    D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms, VCH New York1993
    E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chem. Interf. Electrochem. 101 (1979) 19-28
    A.J. Bard, L.R. Faulkner, J. Leddy, et al., Electrochemical methods: fundamentals and applications, Wiley New York 1980
    H. Lund, M.M. Baizer, Organic Electrochemistry: An Introduction and a Guide, M. Dekker 1991
    D.W. Wang, L. Xie, J. Wang, et al., Determination of balofloxacin in plasma by HPLC-Fluorescence and its pharmacokinetics in rats, J. China Pharmaceut. Univ. 35 (2004) 160-163
    R.N. Rao, C.G. Naidu, C.V. Suresh, et al., Ionic liquid based dispersive liquid-liquid microextraction followed by RP-HPLC determination of balofloxacin in rat serum, Anal. Methods 6 (2014) 1674-1683
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return