Citation: | Sana Ansari, M. Shahnawaze Ansari, Soami P. Satsangee, Rajeev Jain. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 57-67. doi: 10.1016/j.jpha.2020.03.013 |
G. Schmuck, A. Schurmann, G. Schluter, Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model, Antimicrob. Agents Ch. 42 (1998) 1831-1836
|
Y. Ni, Y. Wang, S. Kokot, Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics, Talanta 69 (2006) 216-225
|
Z. Bian, Y. Tian, Z. Zhang, et al., High performance liquid chromatography-electrospray ionization mass spectrometric determination of balofloxacin in human plasma and its pharmacokinetics, J. Chromatogr. B 850 (2007) 68-73
|
T. Nakagawa, M. Ishigai, Y. Hiramatsu, et al., Determination of the new fluoroquinolone balofloxacin and its metabolites in biological fluids by high performance liquid chromatography, Arznei. - Forschung 45 (1995) 716-718
|
J. Deng, Z. Xiao, H. Zhang, et al., Determination of balofloxacin in human plasma by HPLC with solid-phase extraction, Se pu= Chinese J. Chromatogr. 25 (2007) 942
|
N. Nyola, J. Govindasamy, Estimation of balofloxacin in active pharmaceutical ingredient and pharmaceutical formulations by different analytical methods, Nov. Sci. Int. J. Pharmaceut. Sci. 1 (2012) 425-429
|
Y. Sui, T. Guo, J.-w. Zhang, et al., Determination of balofloxacin in human urine by RP-HPLC with fluorescence detection, J. Shenyang Pharmaceut. Univ. 24 (2007) 691-694
|
M. Punam, B. Vandana, Development and Validation of Analytical Methods for Estimation of Balofloxacin in Bulk and Pharmaceutical Dosage Forms, Int. J. PharmTech. Res. 3 (2011) 1938-1941
|
S.A. Reddy, K.C. Sekhar, Development and validation of analytical method for estimation of balofloxacin in bulk and pharmaceutical dosage form, J. Global Trends Pharmaceut. Sci. 3 (2012) 647-655
|
R. Jain, V.K. Gupta, N. Jadon, et al., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem. 407 (2010) 79-88
|
M.L. Yola, V.K. Gupta, T. Eren, et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta 120 (2014) 204-211
|
R.N. Goyal, V.K. Gupta, A. Sangal, et al., Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode, Electroanal. 17 (2005) 2217-2223
|
H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interf. Sci. 560 (2020) 208-212
|
T. Bancic, J. Bitenc, K. Pirnat, et al., Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery, J. Power Sources 395 (2018) 25-30
|
M. Govindasamy, S.-M. Chen, V. Mani, et al., Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk, J. Colloid Interf. Sci. 485 (2017) 129-136
|
V. Mani, M. Govindasamy, S.-M. Chen, et al., Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers, Microchim. Acta 183 (2016) 2267-2275
|
M. Miraki, H. Karimi-Maleh, M.A. Taher, et al., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq. 278 (2019) 672-676
|
E. Tammari, A. Nezhadali, S. Lotfi, et al., Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples, Sensor. Actuat. B-Chem. 241 (2017) 879-886
|
S. Ansari, M.S. Ansari, H. Devnani, et al., CeO2/g-C3N4 nanocomposite: A perspective for electrochemical sensing of anti-depressant drug, Sensor. Actuat. B-Chem. 273 (2018) 1226-1236
|
H. Devnani, S. Ansari, S.P. Satsangee, et al., ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine, Mater. Today Chem. 4 (2017) 17-25
|
S. Ansari, M.S. Ansari, S. Satsangee, et al., WO3 decorated graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug, Anal. Chim. Acta 1046 (2019) 99-109
|
M. Moyo, L.R. Florence, J.O. Okonkwo, Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode, Sensor. Actuat. B-Chem. 209 (2015) 898-905
|
J. Wang, X.W. Sun, A. Wei, et al., Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006) 233106
|
Z. Karami, I. Sheikhshoaie, rGO/ZnO Nanocomposite Modified Carbon Paste Electrode as Sensor for Tyrosine Analysis, Anal. Bioanal. Electrochem. 9 (2017) 834-840
|
H. Karimi-Maleh, I. Sheikhshoaie, A. Samadzadeh, Simultaneous electrochemical determination of levodopa and piroxicam using a glassy carbon electrode modified with a ZnO-Pd/CNT nanocomposite, RSC Adv. 8 (2018) 26707-26712
|
P. Balasubramanian, R. Settu, S.-M. Chen, et al., Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite, Microchim. Acta 185 (2018) 396
|
H. Lv, G. Ji, Z. Yang, et al., Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO, J. Colloid Interf. Sci. 450 (2015) 381-387
|
S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C 116 (2012) 26306-26312
|
S. Yi, X. Yue, D. Xu, et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions, New J. Chem. 39 (2015) 2917-2924
|
L. Li, B. Yan, BiVO4/Bi2O3 submicrometer sphere composite: microstructure and photocatalytic activity under visible-light irradiation, J. Alloy. Compd. 476 (2009) 624-628
|
S. Manavalan, U. Rajaji, S.-M. Chen, et al., Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum, Ultrason. Sonochem. 51 (2019) 103-110
|
I. Svancara, C. Prior, S.B. Hocevar, et al., A decade with bismuth-based electrodes in electroanalysis, Electroanal. 22 (2010) 1405-1420
|
N.L. Teradal, J. Seetharamappa, Bulk Modification of Carbon Paste Electrode with Bi2O3 Nanoparticles and Its Application as an Electrochemical Sensor for Selective Sensing of Anti-HIV Drug Nevirapine, Electroanal. 27 (2015) 2007-2016
|
E.S. Sa, P.S. da Silva, C.L. Jost, et al., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sensor. Actuat. B-Chem. 209 (2015) 423-430
|
G. Bia, L. Borgnino, P.I. Ortiz, et al., Multivariate optimization of square wave voltammetry using bismuth film electrode to determine atrazine, Sensor. Actuat. B-Chem. 203 (2014) 396-405
|
D. Asbahr, L.C.S. Figueiredo-Filho, F.C. Vicentini, et al., Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of methotrexate utilizing bismuth film modified electrodes, Sensor. Actuat. B-Chem. 188 (2013) 334-339
|
S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples, Sensor. Actuat. B-Chem. 255 (2018) 1462-1470
|
A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982
|
J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11 (1978) 102-113
|
R. S, J. Thomas, Solar light driven photocatalytic degradation of organic pollutants using ZnO nanorods coupled with photosensitive molecules, J. Environ. Chem. Eng. 5 (2017) 4239-4250
|
M. Stan, A. Popa, D. Toloman, et al., Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum, Acta Metall. Sin.-Engl. 29 (2016) 228-236
|
A. Hezam, K. Namratha, Q.A. Drmosh, et al., Synthesis of heterostructured Bi2O3-CeO2-ZnO photocatalyst with enhanced sunlight photocatalytic activity, Ceram. Int. 43 (2017) 5292-5301
|
J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy, Phys. Electron. (1995) 230-232
|
S. Kang, R.C. Pawar, Y. Pyo, et al., Size-controlled BiOCl-RGO composites having enhanced photodegradative properties, J. Exp. Nanosci. 11 (2016) 259-275
|
A. Hashemi, A. Bahari, Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s, Curr. Appl. Phys. 18 (2018) 1546-1552
|
A. Hashemi, A. Bahari, S. Ghasemi, Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor, J. Electron. Mater. 47 (2018) 3717-3726
|
J. Zhu, S. Wang, J. Wang, et al., Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots, Appl. Catal. B-Environ. 102 (2011) 120-125
|
S. Yi, X. Yue, D. Xu, et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions, New J. Chem. 39 (2015) 2917-2924
|
H. Gnayem, Y. Sasson, Nanostructured 3D Sunflower-like Bismuth Doped BiOClxBr1-x Solid Solutions with Enhanced Visible Light Photocatalytic Activity as a Remarkably Efficient Technology for Water Purification, J. Phys. Chem. C 119 (2015) 19201-19209
|
A.J. Bard, L.R. Faulkner, Electrochemical methods: principles and applications, Electrochemical Methods: Principles and Applications (2001) 386-428
|
J. Tashkhourian, B. Hemmateenejad, H. Beigizadeh, et al., ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques, J. Electroanal. Chem. 714-715 (2014) 103-108
|
Y. Wei, M. Li, S. Jiao, et al., Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously, Electrochim. Acta 52 (2006) 766-772
|
D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms, VCH New York1993
|
E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chem. Interf. Electrochem. 101 (1979) 19-28
|
A.J. Bard, L.R. Faulkner, J. Leddy, et al., Electrochemical methods: fundamentals and applications, Wiley New York 1980
|
H. Lund, M.M. Baizer, Organic Electrochemistry: An Introduction and a Guide, M. Dekker 1991
|
D.W. Wang, L. Xie, J. Wang, et al., Determination of balofloxacin in plasma by HPLC-Fluorescence and its pharmacokinetics in rats, J. China Pharmaceut. Univ. 35 (2004) 160-163
|
R.N. Rao, C.G. Naidu, C.V. Suresh, et al., Ionic liquid based dispersive liquid-liquid microextraction followed by RP-HPLC determination of balofloxacin in rat serum, Anal. Methods 6 (2014) 1674-1683
|