Citation: | N. Dhanalakshmi, T. Priya, S. Thennarasu, S. Sivanesan, N. Thinakaran. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 48-56. doi: 10.1016/j.jpha.2020.02.001 |
J. G. Hardman, L. E. Limbird, A. Goodman-Gilman, The pharmacological basis of therapeutics, McGraw Hill, New York, 2001, pp 1295-1312
|
H. E. Paulus, D. E. Furst, S. H. Dromgoole, (Eds), Drugs for rheumatic disease, Churchill Livingstone, 1987, Vol. 8
|
A. Babaei, M. Sohrabi, M. Afrasiabi, A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multiwalled carbon nanotubes composite, Electroanalysis, 24(12) (2012) 2387-2394
|
F. Bessone, Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage, World J. Gastroenterol. WJG. 16(45) (2010) 5651
|
Database of Prevalence of arthritis rising among Indians, Compilation prepared by Standard Bussiness,https://www.deccanchronicle.com/lifestyle/health-and-wellbeing/121017/prevalence-of-arthritis-rising-among-indians.html (Published Oct 12, 2017, 12:36 pm IST)
|
J. L. Manzoori, M. Amjadi, Spectrofluorimetric determination of piroxicam in pharmaceutical preparations and spiked human serum using micellar media, Microchim. Acta. 143(1) (2003) 39-44
|
S. M. Al-Kindy, A. Al-Wishahi, F. E. O. Suliman, A sequential injection method for the determination of piroxicam in pharmaceutical formulations using europium sensitized fluorescence, Talanta, 64(5) (2004) 1343-1350
|
B. S. Nagaralli, J. Seetharamappa, M. B. Melwanki, Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations, J. Pharm. Biomed. Anal. 29(5) (2002) 859-864
|
A. J. Nepote, L. Vera-Candiotti, M. R. Williner, et al., Development and validation of chemometrics-assisted spectrophotometry and micellar electrokinetic chromatography for the determination of four-component pharmaceuticals, Anal. Chim. Acta. 489(1) (2003) 77-84
|
M. Sultan, G. Stecher, W. M. Stoggl, et al., Sample pretreatment and determination of non steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and biological samples (blood, plasma, erythrocytes) by HPLC-UV-MS and μ-HPLC, Curr. Med. Chem. 12(5) (2005) 573-588
|
M. Starek, J. Krzek, M. Tarsa, et al., Determination of piroxicam and degradation products in drugs by TLC, Chromatographia. 69(3-4) (2009) 351-356
|
A. Doliwa, S. Santoyo, M. A. Campanero, et al., Sensitive LC determination of piroxicam after in vitro transdermal permeation studies, J. Pharm. Biomed. Anal. 26(4) (2001) 531-537
|
Y. L. Chen, S. M. Wu, Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-inflammatory drugs in pharmaceuticals, Anal. Bioanal. Chem. 381(4) (2005) 907-912
|
H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, et al., A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug, Ind. Eng. Chem. Res. 54(14) (2015) 3634-3639
|
M. Ramrakhiani, Nanostructures and their applications, Recent. Res. Sci. technol. 4(8) (2012) 14-19
|
K. Ghanbari, S. Bonyadi, An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide-copper oxide p-n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan, New J. Chem. 42(11) (2018) 8512-8523
|
M. M. Rahman, H. M. Marwani, F. K. Algethami, et al., Xanthine sensor development based on ZnO-CNT, ZnO-CB, ZnO-GO and ZnO nanoparticles: an electrochemical approach, New J. Chem. 41(14) (2017) 6262-6271
|
S. Priyadarsini, S. Mohanty, S. Mukherjee, et al., Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostructure. Chem. 8(2) (2018) 123-137
|
C. I. Justino, A. R. Gomes, A. C. Freitas, et al., Graphene based sensors and biosensors, TrAC Trends. Anal. Chem. 91 (2017) 53-66
|
M. L. Yola, V. K. Gupta, T. Eren, et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta, 120 (2014) 204-211
|
N. F. Atta, A. Galal, E. H. El-Ads, Graphene-a platform for sensor and biosensor applications. Biosensors-Micro and Nanoscale Applications, 2015, pp 37-84. https://doi.org/10.5772/60676
|
V. Georgakilas, J. N. Tiwari, K. C. Kemp, et al., Non covalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev. 116(9) (2016) 5464-5519
|
T. A. Pham, J. S. Kim, J. S. Kim, One-step reduction of graphene oxide with L-glutathione, Colloids. Surf. A. 384(1-3) (2011) 543-548
|
G. A. Bagiyan, I. K. Koroleva, N. V. Soroka, et al., Oxidation of thiol compounds by molecular oxygen in aqueous solutions, Russ. Chem. Bull. 52(5) (2003) 1135-1141
|
M. J. Fernaandez-Merino, L. Guardia, J. I. Paredes, et al., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C, 114(14) (2010) 6426-6432
|
C. Zhu, S. Guo, Y. Fang, et al., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS nano, 4(4) (2010) 2429-2437
|
N. Dhanalakshmi, T. Priya, N. Thinakaran, Highly electroactive Ce-ZnO/rGO nanocomposite: Ultra-sensitive electrochemical sensing platform for carbamazepine determination, J. Electroanal. Chem. 826 (2018) 150-156
|
S. Chhetri, N. C. Adak, P. Samanta, et al., Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites, Compos. B Eng. 143 (2018) 105-112
|
R. Hrdy, H. Kynclova, J. Drbohlavova, et al., Electrochemical impedance spectroscopy behaviour of guanine on nanostructured planar electrode, Int. J. Electrochem. Sci. 8 (2013) 4384-4396
|
Z. Zhao, J. Zhang, W. Wang, et al., Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection, Appl. Surf. Sci. 485 (2019) 274-282
|
A. Wong, A. M. Santos, O. Fatibello-Filho, Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT: PSS, J. Electroanal. Chem. 799 (2017) 547-555
|
P. Norouzi, N. Ghaheri, β-Cyclodextrine modified carbon paste electrode as a selective sensor for determination of piroxicam using flow injection cyclic voltammetry, Anal. Bioanal. Electrochem. 3 (2011) 87-101
|
J. W. Zhang, R. F. Li, L. Yao, et al., Highly sensitive determination of piroxicam using a glassy carbon electrode modified with silver nanoparticles dotted single walled carbon nanotubes-reduced graphene oxide nanocomposite, J. Electroanal. Chem. 823 (2018) 1-8
|
A. Babaei, M. Afrasiabi, H. Moghanian, A new sensor based on the glassy carbon electrode modified with poly aspartic acid-Fe3O4 nanoparticle/multi-walled carbon nanotubes composite for a selective simultaneous determination of piroxicam and clopidogrel in the presence of uric acid, Anal. Bioanal. Electrochem. 9(6) (2017) 741-761
|
M. B. Gholivand, G. Malekzadeh, A. A. Derakhshan, Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam, Sens. Actuators B Chem. 201 (2014) 378-386
|
H. Karimi-Maleh, I. Sheikhshoaie, A. Samadzadeh, Simultaneous electrochemical determination of levodopa and piroxicam using a glassy carbon electrode modified with a ZnO-Pd/CNT nanocomposite, RSC adv. 8(47) (2018) 26707-26712
|
F. Y. Kong, R. F. Li, L. Yao, et al., Pt nanoparticles supported on nitrogen doped reduced graphene oxide-single wall carbon nanotubes as a novel platform for highly sensitive electrochemical sensing of piroxicam, J. Electroanal. Chem. 832 (2019) 385-391
|
A. M. Santos, A. Wong, F. C. Vicentini, et al., Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin, Microchim. Acta. 186(3) (2019) 174
|
G. Ghobadpour, F. Farjami, F. Fasihi, Sensitive electrochemical monitoring of piroxicam in pharmaceuticals using carbon ionic liquid electrode, Curr. Pharm. Anal. 15(1) (2019) 45-50
|
T. Shaikh, F. N. Talpur, A. R. Khaskeli, et al., Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode, J. Electron. Mater. 46(10) (2017) 5957-5966
|