Volume 13 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Hang Yu, Hui Xu, Xinyu Yang, Zhengwei Zhang, Jiachun Hu, Jinyue Lu, Jie Fu, Mengmeng Bu, Haojian Zhang, Zhao Zhai, Jingyue Wang, Jiandong Jiang, Yan Wang. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 1024-1040. doi: 10.1016/j.jpha.2023.06.012
Citation: Hang Yu, Hui Xu, Xinyu Yang, Zhengwei Zhang, Jiachun Hu, Jinyue Lu, Jie Fu, Mengmeng Bu, Haojian Zhang, Zhao Zhai, Jingyue Wang, Jiandong Jiang, Yan Wang. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 1024-1040. doi: 10.1016/j.jpha.2023.06.012

Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase

doi: 10.1016/j.jpha.2023.06.012
Funds:

This project was supported by the National Key R&D Program of China (Grant No.: 2022YFA0806400), the CAMS Innovation Fund for Medical Sciences (Grant Nos.: 2022-I2M-1-028, 2022-I2M-2-002, and 2021-I2M-1-007), the National Natural Science Foundation of China (Grant Nos.: 81973290 and 82173888), and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, China (Grant No.: Z141102004414062). We would like to thank Shimadzu (China) Co., Ltd. for technological support.

  • Received Date: Feb. 12, 2023
  • Accepted Date: Jun. 25, 2023
  • Rev Recd Date: Jun. 15, 2023
  • Publish Date: Jun. 28, 2023
  • Specnuezhenide (SNZ) is among the main components of Fructus Ligustri Lucidi, which has anti-inflammation, anti-oxidation, and anti-tumor effect. The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ. In this study, the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored. SNZ can be rapidly metabolized by the gut microbiome, and two intestinal bacterial metabolites of SNZ, salidroside and tyrosol, were discovered. In addition, carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism. At the same time, no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate, indicating that the gut microbiota is the main part involved in the metabolism of SNZ. In addition, pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota. Interestingly, tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ, which indicated that SNZ exhibited potential to inhibit tumor growth, and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues. At the same time, SNZ modulated the structure of gut microbiota and fungal group, which may be the mechanism governing the antitumoral activity of SNZ. Furthermore, SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo. In the future, targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.
  • loading
  • Z.T. Pang, Z.Y. Zhou, W. Wang, et al., The advances in research on the pharmacological effects of Fructus Ligustri Lucidi, BioMed Res. Int. 2015 (2015), 281873.
    X. Ji, X.-Q. Liu, L. Gao, et al, Qualitative and quantitative analysis on triterpenoids in Ligustri Lucidi Fructus, Zhongguo Zhong Yao Za Zhi 46 (2021) 1168-1178.
    L. Gao, C. Li, Z. Wang, et al., Ligustri Lucidi Fructus as a traditional Chinese medicine: a review of its phytochemistry and pharmacology, Nat. Prod. Res. 29 (2015) 493-510.
    L. Yu, J.-X. Ren, H.-M. Nan, et al., Identification of antibacterial and antioxidant constituents of the essential oils of Cynanchum chinense and Ligustrum compactum, Nat. Prod. Res. 29 (2015) 1779-1782.
    L.-L. Yu, J.-T. Lou, R.-X. Wei, et al., Protective effect of Ligustri Lucidi Ait Polysaccharide against lipopolysaccharide-induced inflammatory injury of Sertoli cells in rats, Zhonghua Nan Ke Xue 24 (2018) 871-877.
    N. Yang, Y. Zhang, J. Guo, Preventive effect of total glycosides from Ligustri Lucidi Fructus against nonalcoholic fatty liver in mice, Z. Naturforsch. C. J. Biosci. 70 (2015) 237-241.
    C.H. Ko, W.S. Siu, C.P. Lau, et al., Osteoprotective effects of Fructus Ligustri Lucidi aqueous extract in aged ovariectomized rats, Chin. Med. 5 (2010), 39.
    D. Ma, A. Shan, Z. Chen, et al., Effect of Ligustrum lucidum and Schisandra chinensis on the egg production, antioxidant status and immunity of laying hens during heat stress, Arch. Anim. Nutr. 59 (2005) 439-447.
    Y. Zhang, L. Liu, J. Gao, et al., New secoiridoids from the fruits of Ligustrum lucidum Ait with triglyceride accumulation inhibitory effects, Fitoterapia 91 (2013) 107-112.
    Q. Wang, M. Fan, Z. Bian, et al., Extract and identify ingredient from Ligustrum lucidum Ait and study its effect to periodontal pathogen, Zhonghua Kou Qiang Yi Xue Za Zhi 37 (2002) 388-390.
    D. Hu, S. Huang, Y. Ding, et al., Specnuezhenide reduces carbon tetrachloride-induced liver injury in mice through inhibition of oxidative stress and hepatocyte apoptosis, J. Pharm. Pharmacol. 74 (2022) 191-199.
    J. Yang, J. Jia, Y. Yang, et al., Protective effect of specnuezhenide on islet β cell of rats with gestational diabetes mellitus, Cell. Mol. Biol. (Noisy-le-grand) 66 (2020) 60-64.
    C. Ma, X. Zhou, K. Xu, et al., Specnuezhenide decreases interleukin-1β-induced inflammation in rat chondrocytes and reduces joint destruction in osteoarthritic rats, Front. Pharmacol. 9 (2018), 700.
    J. Wu, X. Ke, W. Fu, et al., Inhibition of hypoxia-induced retinal angiogenesis by specnuezhenide, an effective constituent of Ligustrum lucidum Ait., through suppression of the HIF-1α/VEGF signaling pathway, Molecules 21 (2016), 1756.
    Y. Ding, Z. Ju, C. Ma, A validated LC-MS/MS method for the determination of specnuezhenide and salidroside in rat plasma and its application to a pharmacokinetic study, Biomed. Chromatogr. 32 (2018), e4353.
    S.H. Wong, J. Yu, Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 690-704.
    T.S.B. Schmidt, J. Raes, P. Bork, The human gut microbiome: From association to modulation, Cell 172 (2018) 1198-1215.
    R.K. Weersma, A. Zhernakova, J. Fu, Interaction between drugs and the gut microbiome, Gut 69 (2020) 1510-1519.
    B. Javdan, J.G. Lopez, P. Chankhamjon, et al., Personalized mapping of drug metabolism by the human gut microbiome, Cell 181 (2020) 1661-1679.e22.
    Y. Wang, J.W. Shou, X.Y. Li, et al., Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism, Metabolism 70 (2017) 72-84.
    W. Yoo, J.K. Zieba, N.J. Foegeding, et al., High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide, Science 373 (2021) 813-818.
    P.D. Cani, M. Van Hul, C. Lefort, et al., Microbial regulation of organismal energy homeostasis, Nat. Metab. 1 (2019) 34-46.
    A. Koh, A. Molinaro, M. Stahlman, et al., Microbially produced imidazole propionate impairs insulin signaling through mTORC1, Cell 175 (2018) 947-961.e17.
    I. Mogilnicka, M. Ufnal, Gut mycobiota and fungal metabolites in human homeostasis, Curr. Drug Targets 20 (2019) 232-240.
    A. Kombrink, A. Tayyrov, A. Essig, et al., Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria, ISME J. 13 (2019) 588-602.
    M. Fernandez de Ullivarri, S. Arbulu, E. Garcia-Gutierrez, et al., Antifungal peptides as therapeutic agents, Front. Cell. Infect. Microbiol. 10 (2020), 105.
    J.M. Peirce, K. Alvina, The role of inflammation and the gut microbiome in depression and anxiety, J. Neurosci. Res. 97 (2019) 1223-1241.
    M. Rebersek, Gut microbiome and its role in colorectal cancer, BMC Cancer 21 (2021), 1325.
    K. Hezaveh, R.S. Shinde, A. Klotgen, et al., Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity, Immunity 55 (2022) 324-340.e8.
    T. Vatanen, E.A. Franzosa, R. Schwager, et al., The human gut microbiome in early-onset type 1 diabetes from the TEDDY study, Nature 562 (2018) 589-594.
    Y. Wang, Q. Tong, S.-R. Ma, et al., Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota, Signal Transduct. Target. Ther. 6 (2021), 77.
    R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2022, CA Cancer. J. Clin. 72 (2022) 7-33.
    C. Eng, A.A. Jacome, R. Agarwal, et al., A comprehensive framework for early-onset colorectal cancer research, Lancet Oncol. 23 (2022) e116-e128.
    M. Ahmed, Colon cancer: A clinician’s perspective in 2019, Gastroenterology. Res. 13 (2020) 1-10.
    E.M. Park, M. Chelvanambi, N. Bhutiani, et al., Targeting the gut and tumor microbiota in cancer, Nat. Med. 28 (2022) 690-703.
    V. Matson, C.S. Chervin, T.F. Gajewski, Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy, Gastroenterology 160 (2021) 600-613.
    B. Aykut, S. Pushalkar, R. Chen, et al., The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL, Nature 574 (2019) 264-267.
    R. Feng, Z.-X. Zhao, S.-R. Ma, et al., Gut microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration, Front. Pharmacol. 9 (2018), 214.
    L. Pan, H. Yu, J. Fu,et al., Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota, Acta Pharm. Sin. B 13 (2023) 1537-1553.
    Z.-W. Zhang, C.-S. Gao, H. Zhang, et al., Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota, Acta Pharm. Sin. B 12 (2022) 3298-3312.
    R. Chen, Y. Xu, P. Wu, et al., Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota, Pharmacol. Res. 148 (2019), 104403.
    Y. He, L. Fu, Y. Li, et al., Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity, Cell Metab. 33 (2021) 988-1000.e7.
    H.J. Kim, C.M. Moon, J.L. Kang, et al., Aging effects on the diurnal patterns of gut microbial composition in male and female mice, Korean J. Physiol. Pharmacol. 25 (2021) 575-583.
    L. Hu, L. Jin, D. Xia, et al., Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota, Free. Radic. Biol. Med. 152 (2020) 609-621.
    H.M. Kakelar, A. Barzegari, J. Dehghani, et al., Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination, Gastric Cancer 22 (2019) 23-36.
    S. Albhaisi, A. Shamsaddini, A. Fagan, et al., Gut microbial signature of hepatocellular cancer in men with cirrhosis, Liver Transpl. 27 (2021) 629-640.
    C.Y. Huang, M.C. Wang, Clostridium perfringens bacteremia associated with colorectal cancer in an elderly woman, Turk. J. Gastroenterol. 31 (2020) 960-961.
    S.C. Chang, M.H. Shen, C.Y. Liu, et al., A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer, Oncol. Lett. 20 (2020), 327.
    A. Badgeley, H. Anwar, K. Modi, et al., Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives, Biochim. Biophys. Acta Rev. Cancer 1875 (2021), 188494.
    T.T. Jiang, T.-Y. Shao, W.X.G. Ang, et al., Commensal fungi recapitulate the protective benefits of intestinal bacteria, Cell Host Microbe 22 (2017) 809-816.
    P. Venkatachalam, V.K. Nadumane, Modulation of Bax and Bcl-2 genes by secondary metabolites produced by Penicillium rubens JGIPR9 causes the apoptosis of cancer cell lines, Mycology 12 (2019) 69-81.
    R. Perez-Torrado, A. Querol, Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products, Front. Microbiol. 6 (2016), 1522.
    S. Shah, A. Locca, Y. Dorsett, et al., Alterations of the gut mycobiome in patients with MS, eBioMedicine 71 (2021), 103557.
    A.H. Groll, T.J. Walsh, Uncommon opportunistic fungi: New nosocomial threats, Clin. Microbiol. Infect. 7 (2001) 8-24.
    L. Rong, Z. Li, X. Leng, et al., Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway, Biomed. Pharmacother. 122 (2020), 109726.
    H. Shang, S. Wang, J. Yao, et al., Salidroside inhibits migration and invasion of poorly differentiated thyroid cancer cells, Thorac. Cancer 10 (2019) 1469-1478.
    S.-Y. Ding, M.-T. Wang, D.-F. Dai, et al., Salidroside induces apoptosis and triggers endoplasmic reticulum stress in human hepatocellular carcinoma, Biochem. Biophys. Res. Commun. 527 (2020) 1057-1063.
    X. Zhang, L. Xie, J. Long, et al., Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties, Chem. Biol. Interact. 339 (2021), 109268.
    M.B. Plotnikov, T.M. Plotnikova, Tyrosol as a neuroprotector: Strong effects of a “weak” antioxidant, Curr. Neuropharmacol. 19 (2021) 434-448.
    D.H. Lee, Y.J. Kim, M.J. Kim, et al., Pharmacokinetics of tyrosol metabolites in rats, Molecules 21 (2016), 128.
    Z.-X. Zhao, J. Fu, S.-R. Ma,et al., Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin, Theranostics 8 (2018) 5945-5959.
    J.-B. Yu, Z.-X. Zhao, R. Peng, et al., Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin, Front. Pharmacol. 10 (2019), 268.
    M.L.Y. Wan, V.A. Co, H. El-Nezami, Dietary polyphenol impact on gut health and microbiota, Crit. Rev. Food Sci. Nutr. 61 (2021) 690-711.
    Q. Gu, C. Xia, N. Liu, et al., Lactobacillus plantarum ZJ316 alleviates ulcerative colitis by inhibiting inflammation and regulating short-chain fatty acid levels and the gut microbiota in a mouse model, Food Funct. 14 (2023) 3982-3993.
    Y. Yao, L. Yan, H. Chen, et al., Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids, Phytomedicine 77 (2020), 153268.
    A. Braune, M. Gutschow, M. Blaut, An NADH-dependent reductase from Eubacterium ramulus catalyzes the stereospecific heteroring cleavage of flavanones and flavanonols, Appl. Environ. Microbiol. 85 (2019),e01233-19.
    P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341 (2013) 569-573.
    M. Vestergaard, H. Ingmer, Antibacterial and antifungal properties of resveratrol, Int. J. Antimicrob. Agents 53 (2019) 716-723.
    X. Zhang, Y. Han, W. Huang, et al., The influence of the gut microbiota on the bioavailability of oral drugs, Acta Pharm. Sin. B 11 (2021) 1789-1812.
    Z. Zhao, F. Li, J. Ning, et al., Novel compound FLZ alleviates rotenoneinduced PD mouse model by suppressing TLR4/MyD88/NF-kappa B pathway through microbiotaegutebrain axis, Acta Pharm. Sin. B 11 (2021) 2859-2879.
    Y. He, J. Ma, X. Fan, et al., The key role of gut-liver axis in pyrrolizidine alkaloid-induced hepatotoxicity and enterotoxicity, Acta Pharm. Sin. B 11 (2021) 3820-3835.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (309) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return