Volume 15 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
Zhongxin Chen, Xinyao Zhao, Hanyu Zheng, Yufei Wang, Linglin Zhang. Advances and challenges in drug design against dental caries: Application of in silico approaches[J]. Journal of Pharmaceutical Analysis, 2025, 15(6): 101161. doi: 10.1016/j.jpha.2024.101161
Citation: Zhongxin Chen, Xinyao Zhao, Hanyu Zheng, Yufei Wang, Linglin Zhang. Advances and challenges in drug design against dental caries: Application of in silico approaches[J]. Journal of Pharmaceutical Analysis, 2025, 15(6): 101161. doi: 10.1016/j.jpha.2024.101161

Advances and challenges in drug design against dental caries: Application of in silico approaches

doi: 10.1016/j.jpha.2024.101161
Funds:

This work is supported by the Sichuan Science and Technology Program, China (Grant Nos.: 2023ZYD0105 and 2023YFS0343).

  • Received Date: Aug. 12, 2024
  • Accepted Date: Dec. 05, 2024
  • Rev Recd Date: Nov. 20, 2024
  • Publish Date: Dec. 09, 2024
  • Dental caries, a chronic disease characterized by tooth decay, occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria, especially Streptococcus mutans, because of its acidogenic, aciduric, and biofilm-forming capabilities. Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents. The current study represents an up-to-date review of in silico approaches of drug design against dental caries, which have emerged more and more powerful complementary to biochemical attempts. Firstly, we categorize the in silico approaches into computer-aided drug design (CADD) and AI-assisted drug design (AIDD) and highlight the specific methods and models they contain respectively. Subsequently, we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S. mutans, such as glucosyltransferases (Gtfs), antigen I/II (AgI/II), sortase A (SrtA), the VicRK signal transduction system and superoxide dismutases (SODs). Finally, we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.

  • loading
  • [1]
    J. He, H. Liang, J. Kang, et al., Subgroup detection-based dental caries status and inequalities trend exploration: A nationwide, 10-year-repeated cross-sectional study, Front. Public Health 10 (2022), 916878.
    [2]
    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015, Lancet 388 (2016) 1545-1602.
    [3]
    T. Zheng, M. Jing, T. Gong, et al., Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans, J. Oral Microbiol. 15 (2023), 2225257.
    [4]
    N. Zrelovs, V. Kurbatska, Z. Rudevica, et al., Sorting out the superbugs: Potential of sortase A inhibitors among other antimicrobial strategies to tackle the problem of antibiotic resistance, Antibiotics (Basel) 10 (2021), 164.
    [5]
    X. Cheng, X. Xu, X. Zhou, et al., Oxidative stress response: A critical factor affecting the ecological competitiveness of Streptococcus mutans, J. Oral Microbiol. 16 (2023), 2292539.
    [6]
    S. Yu, Q. Ma, Y. Li, et al., Molecular and regulatory mechanisms of oxidative stress adaptation in Streptococcus mutans, Mol. Oral Microbiol. 38 (2023) 1-8.
    [7]
    J. Jin, Dental caries in adults, adolescents, and children, JAMA 330 (2023), 1703.
    [8]
    A.I. Ismail, N.B. Pitts, M. Tellez, et al., The international caries classification and management system (ICCMSTM) an example of a caries management pathway, BMC Oral Health 15 Suppl 1 (2015), S9.
    [9]
    S. Jepsen, J. Blanco, W. Buchalla, et al., Prevention and control of dental caries and periodontal diseases at individual and population level: Consensus report of group 3 of joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases, J. Clin. Periodontol. 44 (2017) S85-S93.
    [10]
    Y. Liao, B.W. Brandt, J. Li, et al., Fluoride resistance in Streptococcus mutans: A mini review, J. Oral Microbiol. 9 (2017), 1344509.
    [11]
    T. Ishiguro, G. Mayanagi, M. Azumi, et al., Sodium fluoride and silver diamine fluoride-coated tooth surfaces inhibit bacterial acid production at the bacteria/tooth interface, J. Dent. 84 (2019) 30-35.
    [12]
    H. Domon-Tawaraya, K. Nakajo, J. Washio, et al., Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production, Caries Res. 47 (2013) 141-149.
    [13]
    M.C. Castillo Pedraza, E.D. de Oliveira Fratucelli, S.M. Ribeiro, et al., Modulation of lipoteichoic acids and exopolysaccharides prevents Streptococcus mutans biofilm accumulation, Molecules 25 (2020), 2232.
    [14]
    Y. Niu, K. Wang, S. Zheng, et al., Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and Streptococcus mutans biofilms, Antimicrob. Agents Chemother. 64 (2020), e00251-20.
    [15]
    Y. Wang, Y. Zeng, Z. Feng, et al., Combined treatment with fluoride and antimicrobial peptide GH12 efficiently controls caries in vitro and in vivo, Caries Res. 56 (2022) 524-534.
    [16]
    X. Li, Y. Wang, X. Jiang, et al., Investigation of drug resistance of caries-related streptococci to antimicrobial peptide GH12, Front. Cell. Infect. Microbiol. 12 (2022), 991938.
    [17]
    S. Luukkonen, H.W. van den Maagdenberg, M.T.M. Emmerich, et al., Artificial intelligence in multi-objective drug design, Curr. Opin. Struct. Biol. 79 (2023), 102537.
    [18]
    H.C.S. Chan, H. Shan, T. Dahoun, et al., Advancing drug discovery via artificial intelligence, Trends Pharmacol. Sci. 40 (2019), 592-604.
    [19]
    M.R. Hasan, A.A. Alsaiari, B.Z. Fakhurji, et al., Application of mathematical modeling and computational tools in the modern drug design and development process, Molecules 27 (2022), 4169.
    [20]
    T.T.V. Tran, H. Tayara, K.T. Chong, Artificial intelligence in drug metabolism and excretion prediction: Recent advances, challenges, and future perspectives, Pharmaceutics 15 (2023), 1260.
    [21]
    B. Shaker, S. Ahmad, J. Lee, et al., In silico methods and tools for drug discovery, Comput. Biol. Med. 137 (2021), 104851.
    [22]
    Q. Zhang, B. Nijampatnam, Z. Hua, et al., Structure-based discovery of small molecule inhibitors of cariogenic virulence, Sci. Rep. 7 (2017), 5974.
    [23]
    R.S.K. Vijayan, J. Kihlberg, J.B. Cross, et al., Enhancing preclinical drug discovery with artificial intelligence, Drug Discov. Today 27 (2022) 967-984.
    [24]
    M. Jukic, U. Bren, Machine learning in antibacterial drug design, Front. Pharmacol. 13 (2022), 864412.
    [25]
    G. Dorahy, J.Z. Chen, T. Balle, Computer-aided drug design towards new psychotropic and neurological drugs, Molecules 28 (2023), 1324.
    [26]
    W. Cui, A. Aouidate, S. Wang, et al., Discovering anti-cancer drugs via computational methods, Front. Pharmacol. 11 (2020), 733.
    [27]
    D. Giordano, C. Biancaniello, M.A. Argenio, et al., Drug design by pharmacophore and virtual screening approach, Pharmaceuticals (Basel) 15 (2022), 646.
    [28]
    V.T. Sabe, T. Ntombela, L.A. Jhamba, et al., Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review, Eur. J. Med. Chem. 224 (2021), 113705.
    [29]
    Y. Niu, P. Lin, Advances of computer-aided drug design (CADD) in the development of anti-Azheimer’s-disease drugs, Drug Discov. Today 28 (2023), 103665.
    [30]
    S.J.Y. Macalino, V. Gosu, S. Hong, et al., Role of computer-aided drug design in modern drug discovery, Arch. Pharm. Res. 38 (2015) 1686-1701.
    [31]
    D. Vemula, P. Jayasurya, V. Sushmitha, et al., CADD, AI and ML in drug discovery: A comprehensive review, Eur. J. Pharm. Sci. 181 (2023), 106324.
    [32]
    A. Bak, Two decades of 4D-QSAR: A dying art or staging a comeback? Int. J. Mol. Sci. 22 (2021), 5212.
    [33]
    I. Rusyn, A. Sedykh, Y. Low, et al., Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data, Toxicol. Sci. 127 (2012) 1-9.
    [34]
    M.J. Robertson, J.G. Meyerowitz, G. Skiniotis, Drug discovery in the era of cryo-electron microscopy, Trends Biochem. Sci. 47 (2022) 124-135.
    [35]
    L.G. Ferreira, R.N.Dos Santos, G. Oliva, et al., Molecular docking and structure-based drug design strategies, Molecules 20 (2015) 13384-13421.
    [36]
    E.H.B. Maia, L.C. Assis, T.A. de Oliveira, et al., Structure-based virtual screening: From classical to artificial intelligence, Front. Chem. 8 (2020), 343.
    [37]
    J. Vazquez, M. Lopez, E. Gibert, et al., Merging ligand-based and structure-based methods in drug discovery: An overview of combined virtual screening approaches, Molecules 25 (2020), 4723.
    [38]
    J. Deng, Z. Yang, I. Ojima, et al., Artificial intelligence in drug discovery: Applications and techniques, Brief. Bioinform. 23 (2022), bbab430.
    [39]
    C. Cerchia, A. Lavecchia, New avenues in artificial-intelligence-assisted drug discovery, Drug Discov. Today 28 (2023), 103516.
    [40]
    P. Schneider, W.P. Walters, A.T. Plowright, et al., Rethinking drug design in the artificial intelligence era, Nat. Rev. Drug Discov. 19 (2020) 353-364.
    [41]
    R. Rodriguez-Perez, J. Bajorath, Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery, J. Comput. Aided Mol. Des. 36 (2022) 355-362.
    [42]
    H. Mughal, E.C. Bell, K. Mughal, et al., Random forest model predictions afford dual-stage antimalarial agents, ACS Infect. Dis. 8 (2022) 1553-1562.
    [43]
    L. Liang, Y. Liu, B. Kang, et al., Large-scale comparison of machine learning algorithms for target prediction of natural products, Brief. Bioinform. 23 (2022), bbac359.
    [44]
    P. Carracedo-Reboredo, J. Linares-Blanco, N. Rodriguez-Fernandez, et al., A review on machine learning approaches and trends in drug discovery, Comput. Struct. Biotechnol. J. 19 (2021) 4538-4558.
    [45]
    L. Zhang, J. Tan, D. Han, et al., From machine learning to deep learning: Progress in machine intelligence for rational drug discovery, Drug Discov. Today 22 (2017) 1680-1685.
    [46]
    M. Orsi, B. Shing Loh, C. Weng, et al., Using machine learning to predict the antibacterial activity of ruthenium complexes, Angew. Chem. Int. Ed. Engl. 63 (2024), e202317901.
    [47]
    J. Huang, Y. Xu, Y. Xue, et al., Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences, Nat. Biomed. Eng. 7 (2023) 797-810.
    [48]
    A. Gangwal, A. Ansari, I. Ahmad, et al., Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities, Front. Pharmacol. 15 (2024), 1331062.
    [49]
    H. Wu, J. Liu, R. Zhang, et al., A review of deep learning methods for ligand based drug virtual screening, Fundam. Res. 4 (2024) 715-737.
    [50]
    Q. Bai, T. Xu, J. Huang, et al., Geometric deep learning methods and applications in 3D structure-based drug design, Drug Discov. Today 29 (2024), 104024.
    [51]
    R. Gupta, D. Srivastava, M. Sahu, et al., Artificial intelligence to deep learning: Machine intelligence approach for drug discovery, Mol. Divers. 25 (2021) 1315-1360.
    [52]
    J.D. Janizek, A.B. Dincer, S. Celik, et al., Uncovering expression signatures of synergistic drug responses via ensembles of explainable machine-learning models, Nat. Biomed. Eng. 7 (2023) 811-829.
    [53]
    S.I. Lee, S. Celik, B.A. Logsdon, et al., A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia, Nat. Commun. 9 (2018), 42.
    [54]
    P. Das, T. Sercu, K. Wadhawan, et al., Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations, Nat. Biomed. Eng. 5 (2021) 613-623.
    [55]
    Y. Chang, B.A. Hawkins, J.J. Du, et al., A guide to in silico drug design, Pharmaceutics 15 (2023), 49.
    [56]
    T. Fujita, D.A. Winkler, Understanding the roles of the “two QSARs”, J. Chem. Inf. Model. 56 (2016) 269-274.
    [57]
    S. Srivastava, S.J.S. Flora, Fluoride in drinking water and skeletal fluorosis: A review of the global impact, Curr. Environ. Health Rep. 7 (2020) 140-146.
    [58]
    Z. Ren, L. Chen, J. Li, et al., Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity, J. Oral Microbiol. 8 (2016), 31095.
    [59]
    Z. Ren, T. Cui, J. Zeng, et al., Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence, Antimicrob. Agents Chemother. 60 (2015) 126-135.
    [60]
    L. Atta, R. Khalil, K.M. Khan, et al., Virtual screening, synthesis and biological evaluation of Streptococcus mutans mediated biofilm inhibitors, Molecules 27 (2022), 1455.
    [61]
    B.W. Cross, S. Ruhl, Glycan recognition at the saliva-oral microbiome interface, Cell. Immunol. 333 (2018) 19-33.
    [62]
    N.S. Jakubovics, N. Stromberg, C.J. van Dolleweerd, et al., Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands, Mol. Microbiol. 55 (2005) 1591-1605.
    [63]
    M. Chittrarasu, A.S. Ahamed, A.A. Sivakumar, In silico identification of potential inhibitor targeting Streptococcus mutans and Lactobacillus acidophilus for the treatment of dental caries, J. Pharm. Res. Int. (2021) 148-160.
    [64]
    R.E. Rivera-Quiroga, N. Cardona, L. Padilla, et al., In silico selection and in vitro evaluation of new molecules that inhibit the adhesion of Streptococcus mutants through antigen I/II, Int. J. Mol. Sci. 22 (2020), 377.
    [65]
    G. Riviere, E.Q. Peng, A. Brotgandel, et al., Characterization of an intermolecular quaternary interaction between discrete segments of the Streptococcus mutans adhesin P1 by NMR spectroscopy, FEBS J. 287 (2020) 2597-2611.
    [66]
    Y. Chen, G. Cui, Y. Cui, et al., Small molecule targeting amyloid fibrils inhibits Streptococcus mutans biofilm formation, AMB Express 11 (2021), 171.
    [67]
    S. Younis, S. Taj, S. Rashid, Structural studies of Staphylococcus aureus Sortase inhibiton via Conus venom peptides, Arch. Biochem. Biophys. 671 (2019) 87-102.
    [68]
    A. Malik, S.B. Kim, A comprehensive in silico analysis of sortase superfamily, J. Microbiol. 57 (2019) 431-443.
    [69]
    H. Luo, D. Liang, M. Bao, et al., In silico identification of potential inhibitors targeting Streptococcus mutans sortase A, Int. J. Oral Sci. 9 (2017) 53-62.
    [70]
    M. Salmanli, G. Tatar Yilmaz, T. Tuzuner, Investigation of the antimicrobial activities of various antimicrobial agents on Streptococcus Mutans Sortase A through computer-aided drug design (CADD) approaches, Comput. Methods Programs Biomed. 212 (2021), 106454.
    [71]
    L. Bravo, Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev. 56 (1998) 317-333.
    [72]
    D.J. Wallock-Richards, J. Marles-Wright, D.J. Clarke, et al., Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-Chalcone, Chem. Commun. (Camb) 51 (2015) 10483-10485.
    [73]
    G. Tatar Yilmaz, N. Yayli, T. Tuzuner, et al., Synthesis, antimicrobial activities, and molecular modeling studies of agents for the sortase A enzyme, Chem. Biodivers. 21 (2024), e202301659.
    [74]
    L. Lei, L. Long, X. Yang, et al., The VicRK two-component system regulates Streptococcus mutans virulence, Curr. Issues Mol. Biol. 32 (2019) 167-200.
    [75]
    S. Wang, L. Long, X. Yang, et al., Dissecting the role of VicK phosphatase in aggregation and biofilm formation of Streptococcus mutans, J. Dent. Res. 100 (2021) 631-638.
    [76]
    P. Henrique Santana Silveira, S.S.D.R. Pita, Druggable sites identification in Streptococcus mutans VicRK system evaluated by catechols, J. Biomol. Struct. Dyn. 41 (2023) 12000-12015.
    [77]
    S.Y. Park, R.N. Raka, X.L. Hui, et al., Six Spain Thymus essential oils composition analysis and their in vitro and in silico study against Streptococcus mutans, BMC Complement. Med. Ther. 23 (2023), 106.
    [78]
    C. Cerchia, E. Roscetto, R. Nasso, et al., In silico identification of novel inhibitors targeting the homodimeric interface of superoxide dismutase from the dental pathogen Streptococcus mutans, Antioxidants (Basel) 11 (2022), 785.
    [79]
    R. Sangavi, S. Muthumanickam, N. Malligarjunan, et al., In silico analysis unravels the promising anticariogenic efficacy of fatty acids against dental caries causing Streptococcus mutans, J. Biomol. Struct. Dyn. 43 (2025) 611-626.
    [80]
    L. Zhao, H.L. Ciallella, L.M. Aleksunes, et al., Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling, Drug Discov. Today 25 (2020) 1624-1638.
    [81]
    E.E. Bolton, J. Chen, S. Kim, et al., PubChem3D: A new resource for scientists, J. Cheminform. 3 (2011), 32.
    [82]
    J.J. Irwin, K.G. Tang, J. Young, et al., ZINC20-a free ultralarge-scale chemical database for ligand discovery, J. Chem. Inf. Model. 60 (2020) 6065-6073.
    [83]
    B. Zdrazil, E. Felix, F. Hunter, et al., The ChEMBL database in 2023: A drug discovery platform spanning multiple bioactivity data types and time periods, Nucleic Acids Res. 52 (2024) D1180-D1192.
    [84]
    L.D. Pennington, M.J. Hesse, D.C. Koester, et al., Property-based drug design merits a Nobel prize, J. Med. Chem. 67 (2024) 11452-11458.
    [85]
    Q. Zhang, T. Nguyen, M. McMichael, et al., New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans, Int. J. Antimicrob. Agents 46 (2015) 174-182.
    [86]
    J.P. Bitoun, Z.T. Wen, Transcription factor Rex in regulation of pathophysiology in oral pathogens, Mol. Oral Microbiol. 31 (2016) 115-124.
    [87]
    A. Yoshida, M. Niki, Y. Yamamoto, et al., Proteome analysis identifies the Dpr protein of Streptococcus mutans as an important factor in the presence of early streptococcal colonizers of tooth surfaces, PLoS One 10 (2015), e0121176.
    [88]
    J. Lapirattanakul, R. Nomura, R. Okawa, et al., Oral lactobacilli related to caries status of children with primary dentition, Caries Res. 54 (2020) 194-204.
    [89]
    K. Xiong, H. Zhu, Y. Li, et al., The arginine biosynthesis pathway of Candida albicans regulates its cross-Kingdom interaction with Actinomyces viscosus to promote root caries, Microbiol. Spectr. 10 (2022), e0078222.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (196) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return