Numerous c-mesenchymal-epithelial transition (c-MET) inhibitors have been reported as potential anticancer agents. However, most fail to enter clinical trials owing to poor efficacy or drug resistance. To date, the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed. In this study, we constructed the largest c-MET dataset, which included 2,278 molecules with different structures, by inhibiting the half maximal inhibitory concentration (IC50) of kinase activity. No significant differences in drug-like properties were observed between active molecules (1,228) and inactive molecules (1,050), including chemical space coverage, physicochemical properties, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding (t-SNE) high-dimensional data. Further clustering and chemical space networks (CSNs) analyses revealed commonly used scaffolds for c-MET inhibitors, such as M5, M7, and M8. Activity cliffs and structural alerts were used to reveal “dead ends” and “safe bets” for c-MET, as well as dominant structural fragments consisting of pyridazinones, triazoles, and pyrazines. Finally, the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules, including at least three aromatic heterocycles, five aromatic nitrogen atoms, and eight nitrogen–oxygen atoms. Overall, our analyses revealed potential structure-activity relationship (SAR) patterns for c-MET inhibitors, which can inform the screening of new compounds and guide future optimization efforts.