Citation: | Hang Yu, Hui Xu, Xinyu Yang, Zhengwei Zhang, Jiachun Hu, Jinyue Lu, Jie Fu, Mengmeng Bu, Haojian Zhang, Zhao Zhai, Jingyue Wang, Jiandong Jiang, Yan Wang. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 1024-1040. doi: 10.1016/j.jpha.2023.06.012 |
Z.T. Pang, Z.Y. Zhou, W. Wang, et al., The advances in research on the pharmacological effects of Fructus Ligustri Lucidi, BioMed Res. Int. 2015 (2015), 281873.
|
X. Ji, X.-Q. Liu, L. Gao, et al, Qualitative and quantitative analysis on triterpenoids in Ligustri Lucidi Fructus, Zhongguo Zhong Yao Za Zhi 46 (2021) 1168-1178.
|
L. Gao, C. Li, Z. Wang, et al., Ligustri Lucidi Fructus as a traditional Chinese medicine: a review of its phytochemistry and pharmacology, Nat. Prod. Res. 29 (2015) 493-510.
|
L. Yu, J.-X. Ren, H.-M. Nan, et al., Identification of antibacterial and antioxidant constituents of the essential oils of Cynanchum chinense and Ligustrum compactum, Nat. Prod. Res. 29 (2015) 1779-1782.
|
L.-L. Yu, J.-T. Lou, R.-X. Wei, et al., Protective effect of Ligustri Lucidi Ait Polysaccharide against lipopolysaccharide-induced inflammatory injury of Sertoli cells in rats, Zhonghua Nan Ke Xue 24 (2018) 871-877.
|
N. Yang, Y. Zhang, J. Guo, Preventive effect of total glycosides from Ligustri Lucidi Fructus against nonalcoholic fatty liver in mice, Z. Naturforsch. C. J. Biosci. 70 (2015) 237-241.
|
C.H. Ko, W.S. Siu, C.P. Lau, et al., Osteoprotective effects of Fructus Ligustri Lucidi aqueous extract in aged ovariectomized rats, Chin. Med. 5 (2010), 39.
|
D. Ma, A. Shan, Z. Chen, et al., Effect of Ligustrum lucidum and Schisandra chinensis on the egg production, antioxidant status and immunity of laying hens during heat stress, Arch. Anim. Nutr. 59 (2005) 439-447.
|
Y. Zhang, L. Liu, J. Gao, et al., New secoiridoids from the fruits of Ligustrum lucidum Ait with triglyceride accumulation inhibitory effects, Fitoterapia 91 (2013) 107-112.
|
Q. Wang, M. Fan, Z. Bian, et al., Extract and identify ingredient from Ligustrum lucidum Ait and study its effect to periodontal pathogen, Zhonghua Kou Qiang Yi Xue Za Zhi 37 (2002) 388-390.
|
D. Hu, S. Huang, Y. Ding, et al., Specnuezhenide reduces carbon tetrachloride-induced liver injury in mice through inhibition of oxidative stress and hepatocyte apoptosis, J. Pharm. Pharmacol. 74 (2022) 191-199.
|
J. Yang, J. Jia, Y. Yang, et al., Protective effect of specnuezhenide on islet β cell of rats with gestational diabetes mellitus, Cell. Mol. Biol. (Noisy-le-grand) 66 (2020) 60-64.
|
C. Ma, X. Zhou, K. Xu, et al., Specnuezhenide decreases interleukin-1β-induced inflammation in rat chondrocytes and reduces joint destruction in osteoarthritic rats, Front. Pharmacol. 9 (2018), 700.
|
J. Wu, X. Ke, W. Fu, et al., Inhibition of hypoxia-induced retinal angiogenesis by specnuezhenide, an effective constituent of Ligustrum lucidum Ait., through suppression of the HIF-1α/VEGF signaling pathway, Molecules 21 (2016), 1756.
|
Y. Ding, Z. Ju, C. Ma, A validated LC-MS/MS method for the determination of specnuezhenide and salidroside in rat plasma and its application to a pharmacokinetic study, Biomed. Chromatogr. 32 (2018), e4353.
|
S.H. Wong, J. Yu, Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 690-704.
|
T.S.B. Schmidt, J. Raes, P. Bork, The human gut microbiome: From association to modulation, Cell 172 (2018) 1198-1215.
|
R.K. Weersma, A. Zhernakova, J. Fu, Interaction between drugs and the gut microbiome, Gut 69 (2020) 1510-1519.
|
B. Javdan, J.G. Lopez, P. Chankhamjon, et al., Personalized mapping of drug metabolism by the human gut microbiome, Cell 181 (2020) 1661-1679.e22.
|
Y. Wang, J.W. Shou, X.Y. Li, et al., Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism, Metabolism 70 (2017) 72-84.
|
W. Yoo, J.K. Zieba, N.J. Foegeding, et al., High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide, Science 373 (2021) 813-818.
|
P.D. Cani, M. Van Hul, C. Lefort, et al., Microbial regulation of organismal energy homeostasis, Nat. Metab. 1 (2019) 34-46.
|
A. Koh, A. Molinaro, M. Stahlman, et al., Microbially produced imidazole propionate impairs insulin signaling through mTORC1, Cell 175 (2018) 947-961.e17.
|
I. Mogilnicka, M. Ufnal, Gut mycobiota and fungal metabolites in human homeostasis, Curr. Drug Targets 20 (2019) 232-240.
|
A. Kombrink, A. Tayyrov, A. Essig, et al., Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria, ISME J. 13 (2019) 588-602.
|
M. Fernandez de Ullivarri, S. Arbulu, E. Garcia-Gutierrez, et al., Antifungal peptides as therapeutic agents, Front. Cell. Infect. Microbiol. 10 (2020), 105.
|
J.M. Peirce, K. Alvina, The role of inflammation and the gut microbiome in depression and anxiety, J. Neurosci. Res. 97 (2019) 1223-1241.
|
M. Rebersek, Gut microbiome and its role in colorectal cancer, BMC Cancer 21 (2021), 1325.
|
K. Hezaveh, R.S. Shinde, A. Klotgen, et al., Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity, Immunity 55 (2022) 324-340.e8.
|
T. Vatanen, E.A. Franzosa, R. Schwager, et al., The human gut microbiome in early-onset type 1 diabetes from the TEDDY study, Nature 562 (2018) 589-594.
|
Y. Wang, Q. Tong, S.-R. Ma, et al., Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota, Signal Transduct. Target. Ther. 6 (2021), 77.
|
R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2022, CA Cancer. J. Clin. 72 (2022) 7-33.
|
C. Eng, A.A. Jacome, R. Agarwal, et al., A comprehensive framework for early-onset colorectal cancer research, Lancet Oncol. 23 (2022) e116-e128.
|
M. Ahmed, Colon cancer: A clinician’s perspective in 2019, Gastroenterology. Res. 13 (2020) 1-10.
|
E.M. Park, M. Chelvanambi, N. Bhutiani, et al., Targeting the gut and tumor microbiota in cancer, Nat. Med. 28 (2022) 690-703.
|
V. Matson, C.S. Chervin, T.F. Gajewski, Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy, Gastroenterology 160 (2021) 600-613.
|
B. Aykut, S. Pushalkar, R. Chen, et al., The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL, Nature 574 (2019) 264-267.
|
R. Feng, Z.-X. Zhao, S.-R. Ma, et al., Gut microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration, Front. Pharmacol. 9 (2018), 214.
|
L. Pan, H. Yu, J. Fu,et al., Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota, Acta Pharm. Sin. B 13 (2023) 1537-1553.
|
Z.-W. Zhang, C.-S. Gao, H. Zhang, et al., Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota, Acta Pharm. Sin. B 12 (2022) 3298-3312.
|
R. Chen, Y. Xu, P. Wu, et al., Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota, Pharmacol. Res. 148 (2019), 104403.
|
Y. He, L. Fu, Y. Li, et al., Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity, Cell Metab. 33 (2021) 988-1000.e7.
|
H.J. Kim, C.M. Moon, J.L. Kang, et al., Aging effects on the diurnal patterns of gut microbial composition in male and female mice, Korean J. Physiol. Pharmacol. 25 (2021) 575-583.
|
L. Hu, L. Jin, D. Xia, et al., Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota, Free. Radic. Biol. Med. 152 (2020) 609-621.
|
H.M. Kakelar, A. Barzegari, J. Dehghani, et al., Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination, Gastric Cancer 22 (2019) 23-36.
|
S. Albhaisi, A. Shamsaddini, A. Fagan, et al., Gut microbial signature of hepatocellular cancer in men with cirrhosis, Liver Transpl. 27 (2021) 629-640.
|
C.Y. Huang, M.C. Wang, Clostridium perfringens bacteremia associated with colorectal cancer in an elderly woman, Turk. J. Gastroenterol. 31 (2020) 960-961.
|
S.C. Chang, M.H. Shen, C.Y. Liu, et al., A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer, Oncol. Lett. 20 (2020), 327.
|
A. Badgeley, H. Anwar, K. Modi, et al., Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives, Biochim. Biophys. Acta Rev. Cancer 1875 (2021), 188494.
|
T.T. Jiang, T.-Y. Shao, W.X.G. Ang, et al., Commensal fungi recapitulate the protective benefits of intestinal bacteria, Cell Host Microbe 22 (2017) 809-816.
|
P. Venkatachalam, V.K. Nadumane, Modulation of Bax and Bcl-2 genes by secondary metabolites produced by Penicillium rubens JGIPR9 causes the apoptosis of cancer cell lines, Mycology 12 (2019) 69-81.
|
R. Perez-Torrado, A. Querol, Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products, Front. Microbiol. 6 (2016), 1522.
|
S. Shah, A. Locca, Y. Dorsett, et al., Alterations of the gut mycobiome in patients with MS, eBioMedicine 71 (2021), 103557.
|
A.H. Groll, T.J. Walsh, Uncommon opportunistic fungi: New nosocomial threats, Clin. Microbiol. Infect. 7 (2001) 8-24.
|
L. Rong, Z. Li, X. Leng, et al., Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway, Biomed. Pharmacother. 122 (2020), 109726.
|
H. Shang, S. Wang, J. Yao, et al., Salidroside inhibits migration and invasion of poorly differentiated thyroid cancer cells, Thorac. Cancer 10 (2019) 1469-1478.
|
S.-Y. Ding, M.-T. Wang, D.-F. Dai, et al., Salidroside induces apoptosis and triggers endoplasmic reticulum stress in human hepatocellular carcinoma, Biochem. Biophys. Res. Commun. 527 (2020) 1057-1063.
|
X. Zhang, L. Xie, J. Long, et al., Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties, Chem. Biol. Interact. 339 (2021), 109268.
|
M.B. Plotnikov, T.M. Plotnikova, Tyrosol as a neuroprotector: Strong effects of a “weak” antioxidant, Curr. Neuropharmacol. 19 (2021) 434-448.
|
D.H. Lee, Y.J. Kim, M.J. Kim, et al., Pharmacokinetics of tyrosol metabolites in rats, Molecules 21 (2016), 128.
|
Z.-X. Zhao, J. Fu, S.-R. Ma,et al., Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin, Theranostics 8 (2018) 5945-5959.
|
J.-B. Yu, Z.-X. Zhao, R. Peng, et al., Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin, Front. Pharmacol. 10 (2019), 268.
|
M.L.Y. Wan, V.A. Co, H. El-Nezami, Dietary polyphenol impact on gut health and microbiota, Crit. Rev. Food Sci. Nutr. 61 (2021) 690-711.
|
Q. Gu, C. Xia, N. Liu, et al., Lactobacillus plantarum ZJ316 alleviates ulcerative colitis by inhibiting inflammation and regulating short-chain fatty acid levels and the gut microbiota in a mouse model, Food Funct. 14 (2023) 3982-3993.
|
Y. Yao, L. Yan, H. Chen, et al., Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids, Phytomedicine 77 (2020), 153268.
|
A. Braune, M. Gutschow, M. Blaut, An NADH-dependent reductase from Eubacterium ramulus catalyzes the stereospecific heteroring cleavage of flavanones and flavanonols, Appl. Environ. Microbiol. 85 (2019),e01233-19.
|
P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341 (2013) 569-573.
|
M. Vestergaard, H. Ingmer, Antibacterial and antifungal properties of resveratrol, Int. J. Antimicrob. Agents 53 (2019) 716-723.
|
X. Zhang, Y. Han, W. Huang, et al., The influence of the gut microbiota on the bioavailability of oral drugs, Acta Pharm. Sin. B 11 (2021) 1789-1812.
|
Z. Zhao, F. Li, J. Ning, et al., Novel compound FLZ alleviates rotenoneinduced PD mouse model by suppressing TLR4/MyD88/NF-kappa B pathway through microbiotaegutebrain axis, Acta Pharm. Sin. B 11 (2021) 2859-2879.
|
Y. He, J. Ma, X. Fan, et al., The key role of gut-liver axis in pyrrolizidine alkaloid-induced hepatotoxicity and enterotoxicity, Acta Pharm. Sin. B 11 (2021) 3820-3835.
|