Turn off MathJax
Article Contents
Hui Song, Jinjiang Chou, Peng Zhao, Meijun Chen, Jue Yang, Xiaojiang Hao. Exploring TGFBR3 in disease pathogenesis: Mechanisms, clinical implications, and pharmacological modulation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101372
Citation: Hui Song, Jinjiang Chou, Peng Zhao, Meijun Chen, Jue Yang, Xiaojiang Hao. Exploring TGFBR3 in disease pathogenesis: Mechanisms, clinical implications, and pharmacological modulation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101372

Exploring TGFBR3 in disease pathogenesis: Mechanisms, clinical implications, and pharmacological modulation

doi: 10.1016/j.jpha.2025.101372
Funds:

This study was funded by grants from the National Natural Science Foundation of China (Grant Nos.: 82304348, 82160823, and 32060210), 2022 Guiyang Science and Technology Talent Training Project (Project No.: [2023]48-5), Guizhou Science and Technology Innovation Talent Team (Grant No.: QKHPTRC-CXTD [2022]007), and Guizhou Medical University (Grant No.: [2024]011).

  • Received Date: Nov. 18, 2024
  • Accepted Date: Jun. 16, 2025
  • Rev Recd Date: May 25, 2025
  • Available Online: Jun. 21, 2025
  • Transforming growth factor beta (TGF-β) receptor 3 (TGFBR3), or betaglycan, is a transmembrane proteoglycan that serves as a coreceptor for TGF-β ligands, modulating TGF-β signaling in a context-dependent manner. Its extracellular domain can undergo proteolytic cleavage, yielding a 120 kDa soluble isoform (sTGFBR3) that antagonizes TGF-β signaling by sequestering ligands. Through this dual role, TGFBR3 exerts profound influence over various physiological and pathological processes, including cell survival, stemness, differentiation, cancer metastasis, chemoresistance, and fibrosis, underscoring its significance as both a biomarker and therapeutic target. Despite its significance, regulatory mechanisms, particularly tissue-specific expression, cross-talk with other pathways and post-translational modifications, remain poorly defined. A current thorough review of the prognostic and therapeutic implications of TGFBR3 is still lacking. In this review, we systematically examine the structural features of TGFBR3, and their functional relevance, providing an in-depth analysis of its dysregulation and molecular roles in diseases such as cancer, nervous system disorders, cardiovascular diseases (CVDs), diabetes and infectious diseases. Current experimental approaches are critically evaluated, and gaps in existing literature are highlighted to identify priorities for future research. By synthesizing emerging insights, this review aims to inform the development of TGFBR3-targeted therapies and support the design of innovative clinical and preclinical strategies.
  • loading
  • [1]
    J.E. de Larco, G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. U. S. A. 75 (1978) 4001-4005.
    [2]
    A. Hata, Y.G. Chen, TGF-β Signaling from Receptors to Smads, Cold Spring Harb. Perspect. Biol. 8 (2016), a022061.
    [3]
    J. Massague, D. Sheppard, TGF-β signaling in health and disease. Cell 186 (2023) 4007-4037.
    [4]
    F. Lopez-Casillas, J.L. Wrana, J. Massague, Betaglycan presents ligand to the TGF beta signaling receptor, Cell 73 (1993) 1435-1444.
    [5]
    K.L. Stenvers, M.L. Tursky, K.W. Harder, et al., Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos, Mol. Cell. Biol. 23 (2003) 4371-4385.
    [6]
    L.A. Compton, D.A. Potash, C.B. Brown, et al., Coronary vessel development is dependent on the type III transforming growth factor beta receptor, Circ. Res. 101 (2007) 784-791.
    [7]
    A. Kamaid, T. Molina-Villa, V. Mendoza, et al., Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish, Genesis 53 (2015), 583-603.
    [8]
    T. Molina-Villa, L. Ramirez-Vidal, V. Mendoza, et al., Chordacentrum mineralization is delayed in zebrafish betaglycan-null mutants, Dev. Dyn. 251 (2022), 213-225.
    [9]
    S.J. Duesman, S. Ortega-Francisco, R. Olguin-Alor, et al., Transforming growth factor receptor III (Betaglycan) regulates the generation of pathogenic Th17 cells in EAE, Front. Immunol. 14 (2023), 1088039.
    [10]
    UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res. 51 (2023) D523-D531.
    [11]
    D. Peng, M. Fu, M. Wang, et al., Targeting TGF-β signal transduction for fibrosis and cancer therapy, Mol. Cancer 21 (2022), 104.
    [12]
    J. Esparza-Lopez, J.L. Montiel, M.M. Vilchis-Landeros, et al., Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A, J. Biol. Chem. 276 (2001) 14588-14596.
    [13]
    M.A. Henen, P. Mahlawat, C. Zwieb, et al., TGF-β2 uses the concave surface of its extended finger region to bind betaglycan's ZP domain via three residues specific to TGF-β and inhibin-α, J. Biol. Chem. 294 (2019) 3065-3080.
    [14]
    J.L. Andres, D. DeFalcis, M. Noda, et al., Binding of two growth factor families to separate domains of the proteoglycan betaglycan, J. Biol. Chem. 267 (1992) 5927-5930.
    [15]
    C.E. Gatza, J.L. Elderbroom, S.Y. Oh, et al., The balance of cell surface and soluble type III TGF-β receptor regulates BMP signaling in normal and cancerous mammary epithelial cells, Neoplasia 16 (2014) 489-500.
    [16]
    F. Lopez-Casillas, S. Cheifetz, J. Doody, et al., Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system, Cell 67 (1991) 785-795.
    [17]
    G.C. Blobe, W.P. Schiemann, M.C. Pepin, et al., Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling, J. Biol. Chem. 276 (2001) 24627-24637.
    [18]
    W. Chen, K.C. Kirkbride, T. How, et al., Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling, Science 301 (2003) 1394-1397.
    [19]
    H.J. You, T. How, G.C. Blobe, The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2, Carcinogenesis 30 (2009) 1281-1287.
    [20]
    K. Mythreye, G.C. Blobe, The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 8221-8226.
    [21]
    G.C. Blobe, X. Liu, S.J. Fang, et al., A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC, J. Biol. Chem. 276 (2001) 39608-39617.
    [22]
    M.J. Goldman, B. Craft, M. Hastie, et al., Visualizing and interpreting cancer genomics data via the Xena platform, Nat. Biotechnol. 38 (2020) 675-678.
    [23]
    C.E. Gatza, S.Y. Oh, G.C. Blobe, Roles for the type III TGF-beta receptor in human cancer, Cell Signal. 22 (2010) 1163-1174.
    [24]
    C.E. Gatza, A. Holtzhausen, K.C. Kirkbride, et al., Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth, Neoplasia 13 (2011) 758-770.
    [25]
    X. Zhang, Y. Chen, Z. Li, et al., TGFBR3 is an independent unfavourable prognostic marker in oesophageal squamous cell cancer and is positively correlated with Ki-67, Int. J. Exp. Pathol. 101 (2020) 223-229.
    [26]
    D. Jurisic, I. Erjavec, V. Trkulja, et al., Soluble type III TGFβ receptor in diagnosis and follow-up of patients with breast cancer, Growth Factors 33 (2015) 200-209.
    [27]
    M. Dong, T. How, K.C. Kirkbride, et al., The type III TGF-beta receptor suppresses breast cancer progression, J. Clin. Invest. 117 (2007) 206-217.
    [28]
    B. Jovanovic, M.W. Pickup, A. Chytil, et al., TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts, Cancers 8 (2016), 100.
    [29]
    Y. He, Y. Cao, X. Wang, et al., Identification of Hub Genes to Regulate Breast Cancer Spinal Metastases by Bioinformatics Analyses, Comput. Math. Methods Med. 2021 (2021), 5548918.
    [30]
    Y.J. Hsu, Y.J. Yin, K.F. Tsai, et al., TGFBR3 supports anoikis through suppressing ATF4 signaling, J. Cell Sci. 135 (2022), jcs258396.
    [31]
    A. Bandyopadhyay, Y. Zhu, S.N. Malik, et al., Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells, Oncogene 21 (2002) 3541-3551.
    [32]
    X. Lei, A. Bandyopadhyay, T. Le, et al., Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells, Oncogene 21 (2002) 7514-7523.
    [33]
    L. Sun, C. Chen, Expression of transforming growth factor beta type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells, J. Biol. Chem. 272 (1997) 25367-25372.
    [34]
    B.A. Hanks, A. Holtzhausen, K.S. Evans, et al., Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment, J. Clin. Invest. 123 (2013) 3925-3940.
    [35]
    B. Jovanovic, J.S. Beeler, M.W. Pickup, et al., Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer, Breast Cancer Res. 16 (2014), R69.
    [36]
    T.L. Criswell, N. Dumont, J.V. Barnett, et al., Knockdown of the transforming growth factor-beta type III receptor impairs motility and invasion of metastatic cancer cells, Cancer Res. 68 (2008) 7304-7312.
    [37]
    R.S. Turley, E.C. Finger, N. Hempel, et al., The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer, Cancer Res. 67 (2007) 1090-1098.
    [38]
    L.Y. Yu-Lee, G. Yu, Y.C. Lee, et al., Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway, Cancer Res. 78 (2018) 2911-2924.
    [39]
    L. Luo, L.L. Zhang, W. Tao, et al., Prediction of potential prognostic biomarkers in metastatic prostate cancer based on a circular RNA-mediated competing endogenous RNA regulatory network, PloS One 16 (2021), e0260983.
    [40]
    A. Bandyopadhyay, L. Wang, F. Lopez-Casillas, et al., Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer, Prostate 63 (2005) 81-90.
    [41]
    L.M. Cook, J.S. Frieling, N. Nerlakanti, et al., Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis, Oncogene 38 (2019) 6959-6969.
    [42]
    J. Nishida, K. Miyazono, S. Ehata, Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms, Oncogene 37 (2018) 2197-2212.
    [43]
    K.J. Gordon, M. Dong, E.M. Chislock, et al., Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression, Carcinogenesis 29 (2008) 252-262.
    [44]
    K.J. Gordon, K.C. Kirkbride, T. How, et al., Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2, Carcinogenesis 30 (2009) 238-248.
    [45]
    X. Hou, L. Yang, K. Wang, et al., HELLS, a chromatin remodeler is highly expressed in pancreatic cancer and downregulation of it impairs tumor growth and sensitizes to cisplatin by reexpressing the tumor suppressor TGFBR3, Cancer Med. 10 (2021) 350-364.
    [46]
    E.C. Finger, R.S. Turley, M. Dong, et al., TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity, Carcinogenesis 29 (2008) 528-535.
    [47]
    Z. Xu, C. Chen, Abnormal Expression and Prognostic Significance of Bone Morphogenetic Proteins and Their Receptors in Lung Adenocarcinoma, Biomed Res Int. 2021 (2021), 6663990.
    [48]
    G. Zou, Y. Wu, B. Ren, et al., Low expression of INHB co-receptor TGFBR3 in connection with metastasis and immune infiltration in lung adenocarcinoma, Am. J. Transl. Res. 14 (2022) 5263-5279.
    [49]
    A. Szymanowska-Narloch, E. Jassem, M. Skrzypski, et al., Molecular profiles of non-small cell lung cancers in cigarette smoking and never-smoking patients, Adv. Med. Sci. 58 (2013) 196-206.
    [50]
    C. Liu, Z. Yang, Z. Deng, et al., Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3, IUBMB Life 70 (2018) 536-546.
    [51]
    M. Rotunno, N. Hu, H. Su, et al., A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma, Cancer Prev. Res. (Phila) 4 (2011) 1599-1608.
    [52]
    J.J. Huang, A.L. Corona, B.P. Dunn, et al., Increased type III TGF-β receptor shedding decreases tumorigenesis through induction of epithelial-to-mesenchymal transition, Oncogene 38 (2019) 3402-3414.
    [53]
    H.J. Bae, J.W. Eun, J.H. Noh, et al., Down-regulation of transforming growth factor beta receptor type III in hepatocellular carcinoma is not directly associated with genetic alterations or loss of heterozygosity, Oncol. Rep. 22 (2009) 475-480.
    [54]
    S. Zhang, W.Y. Sun, J.J. Wu, et al., Decreased expression of the type III TGF-β receptor enhances metastasis and invasion in hepatocellullar carcinoma progression, Oncol. Rep. 35 (2016) 2373-2381.
    [55]
    W.Y. Fang, Y.Z. Kuo, J.Y. Chang, et al., The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer, Cancers (Basel) 12 (2020), 1375.
    [56]
    W. Meng, Q. Xia, L. Wu, et al., Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts, BMC Cancer 11 (2011), 88.
    [57]
    M. Wu, H. Yuan, X. Li, et al., Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma, Front. Endocrinol. (Lausanne) 10 (2019), 790.
    [58]
    C. Arora, D. Kaur, L.D. Naorem, et al., Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway, PloS One 16 (2021), e0259534.
    [59]
    F. Zhang, X. Yu, Z. Lin, et al., Using Tumor-Infiltrating Immune Cells and a ceRNA Network Model to Construct a Prognostic Analysis Model of Thyroid Carcinoma, Front. Oncol. 11 (2021), 658165.
    [60]
    Y. Luo, R. Chen, Z. Ning, et al., Identification of a Four-Gene Signature for Determining the Prognosis of Papillary Thyroid Carcinoma by Integrated Bioinformatics Analysis, Int. J. Gen. Med. 15 (2022) 1147-1160.
    [61]
    K. De Preter, J. Vandesompele, P. Heimann, et al., Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes, Genome Biol. 7 (2006), R84.
    [62]
    E.H. Knelson, A.L. Gaviglio, A.K. Tewari, et al., Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma, J. Clin. Invest. 123 (2013) 4786-4798.
    [63]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J. Clin. 71 (2021) 209-249.
    [64]
    O. Peart, Metastatic Breast Cancer, Radiol. Technol. 88 (2017) 519m-539m.
    [65]
    G.M. Calaf, L.A. Crispin, J.P. Munoz, et al., Ionizing Radiation and Estrogen Affecting Growth Factor Genes in an Experimental Breast Cancer Model, Int. J. Mol. Sci. 23 (2022) 14284.
    [66]
    J.D. Lee, N. Hempel, N.Y. Lee, et al., The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling, Carcinogenesis 31 (2010) 175-183.
    [67]
    J.L. Elderbroom, J.J. Huang, C.E. Gatza, et al., Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion, Mol. Biol. Cell 25 (2014) 2320-2332.
    [68]
    A.E. Meyer, C.E. Gatza, T. How, et al., Role of TGF-β receptor III localization in polarity and breast cancer progression, Mol. Biol. Cell 25 (2014) 2291-2304.
    [69]
    A. Zhang, T. Fan, Y. Liu, et al., Regulatory T cells in immune checkpoint blockade antitumor therapy, Mol. Cancer 23 (2024), 251.
    [70]
    R.J. Rebello, C. Oing, K.E. Knudsen, et al., Prostate cancer, Nat. Rev. Dis. Primers 7 (2021), 9.
    [71]
    C. Logothetis, M.J. Morris, R. Den, et al., Current perspectives on bone metastases in castrate-resistant prostate cancer, Cancer Metastasis Rev. 37 (2018) 189-196.
    [72]
    H. Sicotte, K.R. Kalari, S. Qin, et al., Molecular Profile Changes in Patients with Castrate-Resistant Prostate Cancer Pre- and Post-Abiraterone/Prednisone Treatment, Mol. Cancer Res. 20 (2022) 1739-1750.
    [73]
    J.J. Hsieh, M.P. Purdue, S. Signoretti, et al., Renal cell carcinoma, Nat. Rev. Dis. Primers 3 (2017), 17009.
    [74]
    R.E. Gray, G.T. Harris, Renal Cell Carcinoma: Diagnosis and Management, Am. Fam. Physician. 99 (2019) 179-184.
    [75]
    S.C. Campbell, R.G. Uzzo, J.A. Karam, et al., Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-up: AUA Guideline: Part II, J. Urol. 206 (2021) 209-218.
    [76]
    J.A. Copland, B.A. Luxon, L. Ajani, et al., Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression, Oncogene 22 (2003) 8053-8062.
    [77]
    S.J. Cooper, H. Zou, S.N. Legrand, et al., Loss of type III transforming growth factor-beta receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma, Oncogene 29 (2010) 2905-2915.
    [78]
    X. Wu, W. Xie, B. Gong, et al., Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma, Front. Oncol. 13 (2023), 1124080.
    [79]
    A.J. Armstrong, A.B. Nixon, A. Carmack, et al., Angiokines Associated with Targeted Therapy Outcomes in Patients with Non-Clear Cell Renal Cell Carcinoma, Clin. Cancer Res. 27 (2021) 3317-3328.
    [80]
    GBD 2017 Pancreatic Cancer Collaborators, The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet Gastroenterol. Hepatol. 4 (2019) 934-947.
    [81]
    J.D. Mizrahi, R. Surana, J.W. Valle, et al., Pancreatic cancer, Lancet 395 (2020) 2008-2020.
    [82]
    C. Fang, C.Y. Dai, Z. Mei, et al., microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings, J. Exp. Clin. Cancer Res. 37(2018), 25.
    [83]
    Z. Yin, T. Ma, B. Huang, et al., Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway, Exp. Clin. Cancer Res. 38 (2019), 310.
    [84]
    M.B. Schabath, M.L. Cote, Cancer Progress and Priorities: Lung Cancer, Cancer Epidemiol. Biomarkers Prev. 28 (2019) 1563-1579.
    [85]
    M. Hansen, M.H. Andersen, The role of dendritic cells in cancer, Semin. Immunopathol. 39 (2017) 307-316.
    [86]
    H. Kagamu, S. Kitano, O. Yamaguchi, et al., CD4(+) T-cell Immunity in the Peripheral Blood Correlates with Response to Anti-PD-1 Therapy, Cancer Immunol. Res. 8 (2020) 334-344.
    [87]
    Y. Zhang, X. Chen, M. Qiao, et al., Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells, Oncol. Rep. 32 (2014) 1013-1020.
    [88]
    K. Motoyama, F. Tanaka, Y. Kosaka, et al., Clinical significance of BMP7 in human colorectal cancer, Ann. Surg. Oncol. 15 (2008) 1530-1537.
    [89]
    X.L. Liu, B.X. Xue, Z. Lei, et al., TGFBR3 co-downregulated with GATA3 is associated with methylation of the GATA3 gene in bladder urothelial carcinoma, Anat. Rec. (Hoboken) 296 (2013) 1717-1723.
    [90]
    X.L. Liu, K. Xiao, B. Xue, et al., Dual role of TGFBR3 in bladder cancer, Oncol. Rep. 30 (2013) 1301-1308.
    [91]
    C. Bellucci, C. Lilli, T. Baroni, et al., Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease, Mol. Med. 13 (2007) 542-550.
    [92]
    X. Quan, H. Liang, Y. Chen, et al., Related Network and Differential Expression Analyses Identify Nuclear Genes and Pathways in the Hippocampus of Alzheimer Disease, Med. Sci. Monit. 26 (2020), e919311.
    [93]
    H. Song, J. Yang, W. Yu, Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer's Disease: An Integrated Epigenomic-Transcriptomic Analysis, Front. Cell Dev. Biol. 9 (2021), 825729.
    [94]
    H. Song, M. Xia, P. Zhao, et al., Overexpression of TGFBR3 Aggravates Cognitive Impairment and Neuroinflammation by Promoting Microglia M1 Polarization in the APP/PS1 Mouse Model of Alzheimer's Disease, Mol. Neurobiol. 2025. https://doi.org/10.1007/s12035-025-04731-w.
    [95]
    L. Zhou, N. Wang, W. Feng, et al., Soluble TGF-β decoy receptor TGFBR3 exacerbates Alzheimer's disease pathology by modifying microglial function, Glia 72 (2024) 2201-2216.
    [96]
    S.A. Kent, T.L. Spires-Jones, C.S. Durrant, The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics, Acta Neuropathol. 140 (2020) 417-447.
    [97]
    C.R. Blair, J.B. Stone, R.G. Wells, The type III TGF-β receptor betaglycan transmembrane-cytoplasmic domain fragment is stable after ectodomain cleavage and is a substrate of the intramembrane protease γ-secretase, Biochim. Biophys. Acta 1813 (2011) 332-339.
    [98]
    World Health Organization, Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). (Accessed 3 August 2023).
    [99]
    J. Liu, X. Bu, L. Wei, et al., Global burden of cardiovascular diseases attributable to hypertension in young adults from 1990 to 2019, J. Hypertens. 39 (2021) 2488-2496.
    [100]
    N.S. Sanchez, C.R. Hill, J.D. Love, et al., The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior, Dev. Biol. 358 (2011) 331-343.
    [101]
    C.Y. Chen, O.K. Choong, L.W. Liu, et al., MicroRNA let-7-TGFBR3 signalling regulates cardiomyocyte apoptosis after infarction, EBioMedicine 46 (2019) 236-247.
    [102]
    X. Tan, Q. Dai, H. Sun, et al., Systematic Bioinformatics Analysis Based on Public and Second-Generation Sequencing Transcriptome Data: A Study on the Diagnostic Value and Potential Mechanisms of Immune-Related Genes in Acute Myocardial Infarction, Front. Cardiovasc. Med. 9 (2022), 863248.
    [103]
    B. Indumathi, S.S. Oruganti, S.M. Naushad, et al., Probing the epigenetic signatures in subjects with coronary artery disease, Mol. Biol. Rep. 47 (2020) 6693-6703.
    [104]
    P. Sharma, G. Garg, A. Kumar, et al., Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients, Gene 541 (2014) 31-40.
    [105]
    C.B. Brown, A.S. Boyer, R.B. Runyan, et al., Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart, Science 283 (1999) 2080-2082.
    [106]
    N.S. Sanchez, J.V. Barnett, TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway, Cell. Signal. 24 (2012) 539-548.
    [107]
    P. Allison, D. Espiritu, J.V. Barnett, et al., Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility, Cell. Signal. 27 (2015) 453-459.
    [108]
    D.M. DeLaughter, C.R. Clark, D.C. Christodoulou, et al., Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro, PloS One 11 (2016), e0159710.
    [109]
    T.A. Townsend, J.Y. Robinson, T. How, et al., Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC, Cell. Signal. 24 (2012) 247-256.
    [110]
    S. Sankar, N. Mahooti-Brooks, M. Centrella, et al., Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor beta 2, J. Biol. Chem. 270 (1995) 13567-13572.
    [111]
    W. Chu, X. Li, C. Li, et al., TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis, J. Cell. Physiol. 226 (2011) 2586-2594.
    [112]
    N. Hermida, B. Lopez, A. Gonzalez, et al., A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats, Cardiovasc. Res. 81 (2009) 601-609.
    [113]
    C. Arce, I. Rodriguez-Rovira, K. De Rycke, et al., Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome, Arterioscler. Thromb. Vasc. Biol. 41 (2021) e440-e452.
    [114]
    F. Sun, W. Duan, Y. Zhang, et al., Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression, Br. J. Pharmacol. 172 (2015) 3779-3792.
    [115]
    H. Liang, C. Zhang, T. Ban, et al., A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis, Int. J. Biochem. Cell Biol. 44 (2012) 2152-2160.
    [116]
    W. Du, H. Liang, X. Gao, et al., MicroRNA-328, a Potential Anti-Fibrotic Target in Cardiac Interstitial Fibrosis, Cell. Physiol. Biochem. 39 (2016) 827-836.
    [117]
    Z. Yang, Z. Xiao, H. Guo, et al., Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts, J. Cell. Mol. Med. 23 (2019) 3246-3256.
    [118]
    H. Sun, P. Saeedi, S. Karuranga, et al., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract. 183 (2022), 109119.
    [119]
    Z. Li, J. Liu, W. Wang, et al., Investigation of hub genes involved in diabetic nephropathy using biological informatics methods, Ann. Transl. Med. 8 (2020), 1087.
    [120]
    C. Li, F. Su, L. Zhang, et al., Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status, J. Inflamm. Res. 14 (2021) 6871-6891.
    [121]
    L. Chen, C. Klass, A. Woods, Syndecan-2 regulates transforming growth factor-beta signaling, J. Biol. Chem. 279 (2004) 15715-15718.
    [122]
    T. Yamamoto, T. Nakamura, N.A. Noble, et al., Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 1814-1818.
    [123]
    K. Nomura, H. Tada, K. Kuboki, et al., Transforming growth factor-beta-1 latency-associated peptide and soluble betaglycan prevent a glucose-induced increase in fibronectin production in cultured human mesangial cells, Nephron 91 (2002) 606-611.
    [124]
    P. Juarez, M.M. Vilchis-Landeros, J. Ponce-Coria, et al., Soluble betaglycan reduces renal damage progression in db/db mice, Am. J. Physiol. Renal Physiol. 292 (2007) F321-F329.
    [125]
    D.M. Morens, G.K. Folkers, A.S. Fauci, The challenge of emerging and re-emerging infectious diseases, Nature 430 (2004) 242-249.
    [126]
    M.J. Langelier, D.C. Vinh, Host-directed immunotherapy to fight infectious diseases, Curr. Opin. Pediatr. 34 (2022) 616-624.
    [127]
    R. Hernandez-Pando, H. Orozco-Esteves, H.A. Maldonado, et al., A combination of a transforming growth factor-beta antagonist and an inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis, Clin. Exp. Immunol. 144 (2006) 264-272.
    [128]
    Q. Zhang, Y. Hu, P. Wei, et al., Identification of hub genes for adult patients with sepsis via RNA sequencing, Sci. Rep. 12 (2022), 5128.
    [129]
    X. Hao, H. Wei, LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis, BMC Pulm. Med. 22 (2022), 371.
    [130]
    J.H. Kim, S.J. Yu, B.L. Park, et al., TGFBR3 polymorphisms and its haplotypes associated with chronic hepatitis B virus infection and age of hepatocellular carcinoma occurrence, Dig. Dis. 29 (2011) 278-283.
    [131]
    X. He, Y. Wang, X. Fan, et al., A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III, J. Hepatol. 72 (2020) 519-527.
    [132]
    L. Wang, J. Huang, M. Jiang, CREB5 computational regulation network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients, Cell Biochem. Biophys. 60 (2011) 199-207.
    [133]
    S.P. Brooks, Z.P. Bernstein, S.L. Schneider, et al., Role of transforming growth factor-beta1 in the suppressed allostimulatory function of AIDS patients, AIDS 12 (1998) 481-487.
    [134]
    I.J. Ezquerro, J.J. Lasarte, J. Dotor, et al., A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury, Cytokine 22 (2003) 12-20.
    [135]
    J. Medina-Echeverz, J. Fioravanti, N. Diaz-Valdes, et al., Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases, PloS One 9 (2014), e96799.
    [136]
    N. Hempel, T. How, M. Dong, et al., Loss of betaglycan expression in ovarian cancer: role in motility and invasion, Cancer Res. 67 (2007) 5231-5238.
    [137]
    Q. Gong, Y. Wang, K. Zhu, et al., CUL4B enhances the malignant phenotype of esophageal squamous cell carcinoma by suppressing TGFBR3 expression, Biochem. Biophys. Res. Commun. 676 (2023) 58-65.
    [138]
    Z. Wei, K. Chang, C. Fan, Hsa_circ_0042666 inhibits proliferation and invasion via regulating miR-223/TGFBR3 axis in laryngeal squamous cell carcinoma, Biomed. Pharmacother. 119 (2019), 109365.
    [139]
    J.T. Schwartze, S. Becker, E. Sakkas, et al., Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts, J. Biol. Chem. 289 (2014) 3262-3275.
    [140]
    M.J. Lee, R.T. Pickering, V. Shibad, et al., Impaired Glucocorticoid Suppression of TGFβ Signaling in Human Omental Adipose Tissues Limits Adipogenesis and May Promote Fibrosis, Diabetes 68 (2019) 587-597.
    [141]
    S.K. Meurer, B. Lahme, L. Tihaa, et al., N-acetyl-L-cysteine suppresses TGF-beta signaling at distinct molecular steps: the biochemical and biological efficacy of a multifunctional, antifibrotic drug, Biochem. Pharmacol. 70 (2005) 1026-1034.
    [142]
    P. Rath, C. Nardiello, D.E. Surate Solaligue, et al., Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia, Pediatr. Res. 81 (2017) 795-805.
    [143]
    C. Diodovich, C. Urani, D. Maurici, et al., Modulation of different stress pathways after styrene and styrene-7,8-oxide exposure in HepG2 cell line and normal human hepatocytes, J. Appl. Toxicol. 26 (2006) 317-325.
    [144]
    J.M. Lee, Y.S. Jang, B.R. Jin, et al., Retinoic acid enhances lactoferrin-induced IgA responses by increasing betaglycan expression, Cell. Mol. Immunol. 13 (2016) 862-870.
    [145]
    Y.L. Shih, M.K. Au, K.L. Liu, et al., Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells, Environ. Toxicol. 32 (2017) 2400-2413.
    [146]
    G. Stabellini, C. Balducci, C. Lilli, et al., Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts, Biomed. Pharmacother. 62 (2008) 436-442.
    [147]
    Y. Omori, K. Nakamura, S. Yamashita, et al., Effect of follicle-stimulating hormone and estrogen on the expression of betaglycan messenger ribonucleic acid levels in cultured rat granulosa cells, Endocrinology 146 (2005) 3379-3386.
    [148]
    K. Mucha, B. Foroncewicz, K. Koziak, et al., The effects of indomethacin on angiogenic factors mRNA expression in renal cortex of healthy rats, J. Physiol. Pharmacol. 58 (2007) 165-178.
    [149]
    T.M. Lovell, S.L. Al-Musawi, R.T. Gladwell, et al., Gonadotrophins modulate hormone secretion and steady-state mRNA levels for activin receptors (type I, IIA, IIB) and inhibin co-receptor (betaglycan) in granulosa and theca cells from chicken prehierarchical and preovulatory follicles, Reproduction 133 (2007) 1159-1168.
    [150]
    A. Evangelou, S.K. Jindal, T.J. Brown, et al., Down-regulation of transforming growth factor beta receptors by androgen in ovarian cancer cells, Cancer Res. 60 (2000) 929-935.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (27) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return