Turn off MathJax
Article Contents
Ding Luo, Zhou Sha, Junli Mao, Jialing Liu, Yue Zhou, Haibo Wu, Weiwei Xue. Repurposing drugs for the human dopamine transporter through WHALES descriptors-based virtual screening and bioactivity evaluation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101368
Citation: Ding Luo, Zhou Sha, Junli Mao, Jialing Liu, Yue Zhou, Haibo Wu, Weiwei Xue. Repurposing drugs for the human dopamine transporter through WHALES descriptors-based virtual screening and bioactivity evaluation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101368

Repurposing drugs for the human dopamine transporter through WHALES descriptors-based virtual screening and bioactivity evaluation

doi: 10.1016/j.jpha.2025.101368
Funds:

This work was supported by the Natural Science Foundation of China (Grant No.: 21505009), the Natural Science Foundation of Chongqing, China (Grant No.: 2023NSCQ-MSX0140), and the Open Project of Central Nervous System Drug Key Laboratory of Sichuan Province, China (Grant No.: 230012-01SZ). We thank Prof. Xiaojun Yao at Macao Polytechnic University (Macao, China) for help and discussion on docking study.

  • Received Date: Dec. 07, 2024
  • Accepted Date: Jun. 11, 2025
  • Rev Recd Date: Apr. 21, 2025
  • Available Online: Jun. 18, 2025
  • Computational approaches, encompassing both physics-based and machine learning (ML) methodologies, have gained substantial traction in drug repurposing efforts targeting specific therapeutic entities. The human dopamine (DA) transporter (hDAT) is the primary therapeutic target of numerous psychiatric medications. However, traditional hDAT-targeting drugs, which interact with the primary binding site, encounter significant limitations, including addictive potential and stimulant effects. In this study, we propose an integrated workflow combining virtual screening based on weighted holistic atom localization and entity shape (WHALES) descriptors with in vitro experimental validation to repurpose novel hDAT-targeting drugs. Initially, WHALES descriptors facilitated a similarity search, employing four benztropine-like atypical inhibitors known to bind hDAT's allosteric site as templates. Consequently, from a compound library of 4,921 marketed and clinically tested drugs, we identified 27 candidate atypical inhibitors. Subsequently, ADMETlab was employed to predict the pharmacokinetic and toxicological properties of these candidates, while induced-fit docking (IFD) was performed to estimate their binding affinities. Six compounds were selected for in vitro assessments of neurotransmitter reuptake inhibitory activities. Among these, three exhibited significant inhibitory potency, with half maximal inhibitory concentration (IC50) values of 0.753 μM, 0.542 μM, and 1.210 μM, respectively. Finally, molecular dynamics (MD) simulations and end-point binding free energy analyses were conducted to elucidate and confirm the inhibitory mechanisms of the repurposed drugs against hDAT in its inward-open conformation. In conclusion, our study not only identifies promising active compounds as potential atypical inhibitors for novel therapeutic drug development targeting hDAT but also validates the effectiveness of our integrated computational and experimental workflow for drug repurposing.
  • loading
  • [1]
    A.S. Kristensen, J. Andersen, T.N. Joergensen, et al., SLC6 neurotransmitter transporters: Structure, function, and regulation, Pharmacol. Rev. 63 (2011) 585-640.
    [2]
    J.E. Kilty, D. Lorang, S.G. Amara, Cloning and expression of a cocaine-sensitive rat dopamine transporter, Science 254 (1991) 578-579.
    [3]
    A. Penmatsa, K.H. Wang, E. Gouaux, X-ray structure of dopamine transporter elucidates antidepressant mechanism, Nature 503 (2013) 85-90.
    [4]
    D. Luo, Y. Zhang, Y. Li, et al., Structural models of human norepinephrine transporter ensemble reveal the allosteric sites and ligand-binding mechanism, J. Phys. Chem. B 128 (2024) 8651-8661.
    [5]
    K.H. Wang, A. Penmatsa, E. Gouaux, Neurotransmitter and psychostimulant recognition by the dopamine transporter, Nature 521 (2015) 322-327.
    [6]
    O. Jardetzky, Simple allosteric model for membrane pumps, Nature 211 (1966) 969-970.
    [7]
    S. Deng, H. Zhang, R. Gou, et al., Structure-based discovery of a novel allosteric inhibitor against human dopamine transporter, J. Chem. Inf. Model. 63 (2023) 4458-4467.
    [8]
    Y. Li, X. Wang, Y. Meng, et al., Dopamine reuptake and inhibitory mechanisms in human dopamine transporter, Nature 632 (2024) 686-694.
    [9]
    D.K. Srivastava, V. Navratna, D.K. Tosh, et al., Structure of the human dopamine transporter and mechanisms of inhibition, Nature 632 (2024) 672-677.
    [10]
    W. Xue, T. Fu, G. Zheng, et al., Recent advances and challenges of the drugs acting on monoamine transporters, Curr. Med. Chem. 27 (2020) 3830-3876.
    [11]
    G. Tu, T. Fu, G. Zheng, et al., Computational chemistry in structure-based solute carrier transporter drug design: Recent advances and future perspectives, J. Chem. Inf. Model. 64 (2024) 1433-1455.
    [12]
    J. Yin, Z. Chen, N. You, et al., VARIDT 3.0: The phenotypic and regulatory variability of drug transporter, Nucleic Acids Res. 52 (2024) D1490-D1502.
    [13]
    G. Tu, B. Xu, D. Luo, et al., Multi-state model-based identification of cryptic allosteric sites on human serotonin transporter, ACS Chem. Neurosci. 14 (2023) 1686-1694.
    [14]
    W. Xue, T. Fu, S. Deng, et al., Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram, ACS Chem. Neurosci. 13 (2022) 340-351.
    [15]
    K.C. Schmitt, R.B. Rothman, M.E.A. Reith, Nonclassical pharmacology of the dopamine transporter: Atypical inhibitors, allosteric modulators, and partial substrates, J. Pharmacol. Exp. Ther. 346 (2013) 2-10.
    [16]
    M.E. Reith, J.L. Berfield, L.C. Wang, et al., The uptake inhibitors cocaine and benztropine differentially alter the conformation of the human dopamine transporter, J. Biol. Chem. 276 (2001) 29012-29018.
    [17]
    C.J. Loland, R.I. Desai, M.F. Zou, et al., Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors, Mol. Pharmacol. 73 (2008) 813-823.
    [18]
    K.C. Schmitt, M.E.A. Reith, The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors, PLoS One 6 (2011), e25790.
    [19]
    J.D. Urban, W.P. Clarke, M. von Zastrow, et al., Functional selectivity and classical concepts of quantitative pharmacology, J. Pharmacol. Exp. Ther. 320 (2007) 1-13.
    [20]
    A.J. Avelar, J. Cao, A.H. Newman, et al., Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons, Neuropharmacology 123 (2017) 410-419.
    [21]
    J. Kniazeff, L. Shi, C.J. Loland, et al., An intracellular interaction network regulates conformational transitions in the dopamine transporter, J. Biol. Chem. 283 (2008) 17691-17701.
    [22]
    C.J. Loland, M. Mereu, O.M. Okunola, et al., R-modafinil (armodafinil): A unique dopamine uptake inhibitor and potential medication for psychostimulant abuse, Biol. Psychiatry 72 (2012) 405-413.
    [23]
    H. Bisgaard, M.A.B. Larsen, S. Mazier, et al., The binding sites for benztropines and dopamine in the dopamine transporter overlap, Neuropharmacology 60 (2011) 182-190.
    [24]
    M.T. Jacobs, Y. Zhang, S.D. Campbell, et al., Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter, J. Biol. Chem. 282 (2007) 29441-29447.
    [25]
    T. Chen, G. Xu, R. Mou, et al., Global translational induction during NLR-mediated immunity in plants is dynamically regulated by CDC123, an ATP-sensitive protein, Cell Host Microbe 31 (2023) 334-342.e5.
    [26]
    H. Zhang, Y. Wang, Z. Pan, et al., ncRNAInter: A novel strategy based on graph neural network to discover interactions between lncRNA and miRNA, Brief. Bioinform. 23 (2022), bbac411.
    [27]
    N. Pillai, A. Dasgupta, S. Sudsakorn, et al., Machine Learning guided early drug discovery of small molecules, Drug Discov. Today 27 (2022) 2209-2215.
    [28]
    D. Reker, T. Rodrigues, P. Schneider, et al., Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus, Proc. Natl. Acad. Sci. USA 111 (2014) 4067-4072.
    [29]
    R. Gou, J. Yang, M. Guo, et al., CNSMolGen: A bidirectional recurrent neural network-based generative model for de novo central nervous system drug design, J. Chem. Inf. Model. 64 (2024) 4059-4070.
    [30]
    L. Xue, J. Bajorath, Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening, Comb. Chem. High Throughput Screen. 3 (2000) 363-372.
    [31]
    A. Pozzan, Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery, Curr. Pharm. Des. 12 (2006) 2099-2110.
    [32]
    A.M. Helguera, R.D. Combes, M.P. Gonzalez, et al., Applications of 2D descriptors in drug design: A DRAGON tale, Curr. Top. Med. Chem. 8 (2008) 1628-1655.
    [33]
    D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010) 742-754.
    [34]
    Y. Li, F. Li, Z. Duan, et al., SYNBIP 2.0: Epitopes mapping, sequence expansion and scaffolds discovery for synthetic binding protein innovation, Nucleic Acids Res. 53 (2025) D595-D603.
    [35]
    J. Yang, B. Fu, R. Gou, et al., Molecular mechanism-driven discovery of novel small molecule inhibitors against drug-resistant SARS-CoV-2 mpro variants, J. Chem. Inf. Model. 64 (2024) 7998-8009.
    [36]
    F. Grisoni, D. Merk, V. Consonni, et al., Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity, Commun. Chem. 1 (2018), 44.
    [37]
    D. Merk, F. Grisoni, L. Friedrich, et al., Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators, Commun. Chem. 1 (2018), 68.
    [38]
    F. Grisoni, D. Reker, P. Schneider, et al., Matrix-based molecular descriptors for prospective virtual compound screening, Mol. Inform. 36 (2017). 1-2.
    [39]
    X. Wang, Y. Zhang, Z. Li, et al., PROSCA: An online platform for humanized scaffold mining facilitating rational protein engineering, Nucleic Acids Res. 52 (2024) W272-W279.
    [40]
    L. Tang, L. Bai, W. Wang, et al., Crystal structure of the carnitine transporter and insights into the antiport mechanism, Nat. Struct. Mol. Biol. 17 (2010) 492-496.
    [41]
    T.A. Kopajtic, Y. Liu, C.K. Surratt, et al., Dopamine transporter-dependent and-independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability, J. Pharmacol. Exp. Ther. 335 (2010) 703-714.
    [42]
    L. Fu, S. Shi, J. Yi, et al., ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Res. 52 (2024) W422-W431.
    [43]
    Y. Zhou, M. Song, D. Xie, et al., Structural dynamics-driven discovery of anticancer and antimetastatic effects of diltiazem and glibenclamide targeting urokinase receptor, J. Med. Chem. 66 (2023) 5415-5426.
    [44]
    P. Willett, Similarity-based virtual screening using 2D fingerprints, Drug Discov. Today 11 (2006) 1046-1053.
    [45]
    S.M. Arif, J.D. Holliday, P. Willett, Analysis and use of fragment-occurrence data in similarity-based virtual screening, J. Comput. Aided Mol. Des. 23 (2009) 655-668.
    [46]
    Y.C. Martin, J.L. Kofron, L.M. Traphagen, Do structurally similar molecules have similar biological activity J. Med. Chem. 45 (2002) 4350-4358.
    [47]
    T.A. Halgren, MMFF VI. MMFF94s option for energy minimization studies, J. Comput. Chem. 20 (1999) 720-729.
    [48]
    T.A. Halgren, MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries, J. Comput. Chem. 20 (1999) 730-748.
    [49]
    J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges, Tetrahedron 36 (1980) 3219-3228.
    [50]
    G. Xiong, Z. Wu, J. Yi, et al., ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (2021) W5-W14.
    [51]
    E. Heid, K.P. Greenman, Y. Chung, et al., Chemprop: A machine learning package for chemical property prediction, J. Chem. Inf. Model. 64 (2024) 9-17.
    [52]
    H. Cai, H. Zhang, D. Zhao, et al., FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction, Brief. Bioinform. 23 (2022), bbac408.
    [53]
    S. Kim, J Chen, T Cheng, et al., PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373-D1380.
    [54]
    I.J. Chen, N. Foloppe, Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: Comparison to programs MOE and catalyst, J. Chem. Inf. Model. 50 (2010) 822-839.
    [55]
    L. Pinzi, G. Rastelli, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci. 20 (2019), 4331.
    [56]
    J Wang, P.R. Arantes, A. Bhattarai, et al., Gaussian accelerated molecular dynamics: Principles and applications, Wires Comput. Mol. Sci. 11 (2021), e1521.
    [57]
    C. Lu, C. Wu, D. Ghoreishi, et al., OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput. 17 (2021) 4291-4300.
    [58]
    R.C. Johnston, K. Yao, Z. Kaplan, et al., Epik: P Ka and protonation state prediction through machine learning, J. Chem. Theory Comput. 19 (2023) 2380-2388.
    [59]
    M.P. Jacobson, D.L. Pincus, C.S. Rapp, et al., A hierarchical approach to all-atom protein loop prediction, Proteins 55 (2004) 351-367.
    [60]
    R.A. Friesner, R.B. Murphy, M.P. Repasky, et al., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem. 49 (2006) 6177-6196.
    [61]
    J.A. Harris, R. Liu, V. Martins de Oliveira, et al., GPU-accelerated all-atom particle-mesh Ewald continuous constant pH molecular dynamics in amber, J. Chem. Theory Comput. 18 (2022) 7510-7527.
    [62]
    M. Springborg, B. Kirtman, Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields, J. Chem. Phys. 126 (2007), 104107.
    [63]
    C. Bouysset, S. Fiorucci, ProLIF: A library to encode molecular interactions as fingerprints, J. Cheminform. 13 (2021), 72.
    [64]
    S.K. Vosburg, C.L. Hart, M. Haney, et al., Modafinil does not serve as a reinforcer in cocaine abusers, Drug Alcohol Depend. 106 (2010) 233-236.
    [65]
    A. Casati, R. Santorsola, E. Cerchierini, et al., Ropivacaine, Minerva Anestesiol. 67 (2001) 15-19.
    [66]
    V. Tagariello, A. Caporuscio, O. De Tommaso, Mepivacaine: Update on an evergreen local anaesthetic, Minerva Anestesiol. 67 (2001) 5-8.
    [67]
    W.G. Brockmann, Mepivacaine: A closer look at its properties and current utility, Gen. Dent. 62 (2014) 70-75;quiz76.
    [68]
    E. Kalso, P.H. Rosenberg, Bupivacaine and intravenous regional anaesthesia: A matter of controversy, Ann. Chir. Gynaecol. 73 (1984) 190-196.
    [69]
    B. Otremba, H.C. Dinges, A.K. Schubert, et al., Liposomal bupivacaine-No breakthrough in postoperative pain management, Anaesthesiologie 71 (2022) 556-564.
    [70]
    A. Casati, M. Putzu, Bupivacaine, levobupivacaine and ropivacaine: Are they clinically different Best Pract. Res. Clin. Anaesthesiol. 19 (2005) 247-268.
    [71]
    S. Joergensen, E.OE. Nielsen, D. Peters, et al., Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity, J. Neurosci. Methods 169 (2008) 168-176.
    [72]
    M. Tatsumi, K. Groshan, R.D. Blakely, et al., Pharmacological profile of antidepressants and related compounds at human monoamine transporters, Eur. J. Pharmacol. 340 (1997) 249-258.
    [73]
    G. Tu, T. Fu, F. Yang, et al., Understanding the polypharmacological profiles of triple reuptake inhibitors by molecular simulation, ACS Chem. Neurosci. 12 (2021) 2013-2026.
    [74]
    L. Zheng, S. Shi, X. Sun, et al., MoDAFold: A strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics, Brief. Bioinform. 25 (2024), bbae006.
    [75]
    W. Xue, F. Yang, P. Wang, et al., What contributes to serotonin-norepinephrine reuptake inhibitors' dual-targeting mechanism the key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation, ACS Chem. Neurosci. 9 (2018) 1128-1140.
    [76]
    P.C. Meltzer, A.Y. Liang, B.K. Madras, 2-Carbomethoxy-3-(diarylmethoxy)-1 alpha H, 5 alpha H-tropane analogs: Synthesis and inhibition of binding at the dopamine transporter and comparison with piperazines of the GBR series, J. Med. Chem. 39 (1996) 371-379.
    [77]
    G.E. Agoston, J.H. Wu, S. Izenwasser, et al., Novel N-substituted 3 alpha-[bis(4'-fluorophenyl)methoxy] tropane analogues: Selective ligands for the dopamine transporter, J. Med. Chem. 40 (1997) 4329-4339.
    [78]
    P. Kalaba, M. Ilic, N.Y. Aher, et al., Structure-activity relationships of novel thiazole-based modafinil analogues acting at monoamine transporters, J. Med. Chem. 63 (2020) 391-417.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (33) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return