Turn off MathJax
Article Contents
Yuan Liu, Sitong Chen, Xiaomin Xiong, Zhenguo Wen, Long Zhao, Bo Xu, Qianjin Guo, Jianye Xia, Jianfeng Pei. Artificial intelligence guided Raman spectroscopy in biomedicine: Applications and prospects[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101271
Citation: Yuan Liu, Sitong Chen, Xiaomin Xiong, Zhenguo Wen, Long Zhao, Bo Xu, Qianjin Guo, Jianye Xia, Jianfeng Pei. Artificial intelligence guided Raman spectroscopy in biomedicine: Applications and prospects[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101271

Artificial intelligence guided Raman spectroscopy in biomedicine: Applications and prospects

doi: 10.1016/j.jpha.2025.101271
Funds:

This study was funded by Beijing Municipal Natural Science Foundation (KZ202210017025) and Science and Technology Projects of Jiangsu Province (BE2021756).

  • Received Date: Dec. 03, 2024
  • Rev Recd Date: Feb. 28, 2025
  • Available Online: Mar. 25, 2025
  • Due to its high sensitivity and non-destructive nature, Raman spectroscopy has become an essential analytical tool in biopharmaceutical analysis and drug development. Despite of the computational demands, data requirements, or ethical considerations, artificial intelligence (AI) and particularly deep learning algorithms has further advanced Raman spectroscopy by enhancing data processing, feature extraction, and model optimization, which not only improves the accuracy and efficiency of Raman spectroscopy detection, but also greatly expands its range of application. AI-guided Raman spectroscopy has numerous applications in biomedicine, including characterizing drug structures, analyzing drug forms, controlling drug quality, identifying components, and studying drug-biomolecule interactions. AI-guided Raman spectroscopy has also revolutionized biomedical research and clinical diagnostics, particularly in disease early diagnosis and treatment optimization. Therefore, AI methods are crucial to advancing Raman spectroscopy in biopharmaceutical research and clinical diagnostics, offering new perspectives and tools for disease treatment and pharmaceutical process control. In summary, integrating AI and Raman spectroscopy in biomedicine has significantly improved analytical capabilities, offering innovative approaches for research and clinical applications.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return