Citation: | Ling Li, Anran Guo, Haixia Sun, Yanbing Zhao, Qing Yao, Ling Zhang, Peng Shi, Hongan Tian, Min Zheng. Research and application of thermosensitive Pickering emulsion with X-ray and ultrasound dual-modal imaging functions for intra-arterial embolization treatment[J]. Journal of Pharmaceutical Analysis, 2025, 15(4): 101133. doi: 10.1016/j.jpha.2024.101133 |
[1] |
J.M. Llovet, T. De Baere, L. Kulik, et al., Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 293-313.
|
[2] |
J. Fu, H. Wang, Precision diagnosis and treatment of liver cancer in China, Cancer Lett. 412 (2018) 283-288.
|
[3] |
A. Vogel, T. Meyer, G. Sapisochin, et al., Hepatocellular carcinoma, Lancet 400 (2022) 1345-1362.
|
[4] |
R.A. Baum, S. Baum, Interventional radiology: A half century of innovation, Radiology 273 (2014) S75-S91.
|
[5] |
P. He, E. Ren, B. Chen, et al., A super-stable homogeneous Lipiodol-hydrophilic chemodrug formulation for treatment of hepatocellular carcinoma, Theranostics 12 (2022) 1769-1782.
|
[6] |
M. Kudo, O. Matsui, N. Izumi, et al., JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan, Liver Cancer 3 (2014) 458-468.
|
[7] |
J. Hu, H. Albadawi, B.W. Chong, et al., Advances in biomaterials and technologies for vascular embolization, Adv. Mater. 31 (2019), e1901071.
|
[8] |
B. Zhong, Z. Jin, J. Chen, et al., Role of transarterial chemoembolization in the treatment of hepatocellular carcinoma, J. Clin. Transl. Hepatol. 11 (2023) 480-489.
|
[9] |
M. Reig, A. Forner, J. Rimola, et al., BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, J. Hepatol. 76 (2022) 681-693.
|
[10] |
P. Giunchedi, M. Maestri, E. Gavini, et al., Transarterial chemoembolization of hepatocellular carcinoma-Agents and drugs: An overview. Part 2, Expert Opin. Drug Deliv. 10 (2013) 799-810.
|
[11] |
M. Chen, G. Shu, X. Lv, et al., HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma, Biomaterials 284 (2022), 121512.
|
[12] |
R. Duran, K. Sharma, M.R. Dreher, et al., A novel inherently radiopaque bead for transarterial embolization to treat liver cancer-A pre-clinical study, Theranostics 6 (2016) 28-39.
|
[13] |
Q. Wang, K. Qian, S. Liu, et al., X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization, Biomacromolecules 16 (2015) 1240-1246.
|
[14] |
J. Zeng, L. Li, H. Zhang, et al., Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization, Theranostics 8 (2018) 4591-4600.
|
[15] |
G. Yang, L. Xu, Y. Chao, et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses, Nat. Commun. 8 (2017), 902.
|
[16] |
Y. Liang, H. Yu, G. Feng, et al., High-performance poly(lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX2 liver tumors, ACS Appl. Mater. Interfaces 9 (2017) 43478-43489.
|
[17] |
J. Chen, T. Qian, H. Zhang, et al., Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model, Magn. Reson. Imaging 34 (2016) 177-182.
|
[18] |
S. Tang, C. Fu, L. Tan, et al., Imaging-guided synergetic therapy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules, Biomaterials 133 (2017) 144-153.
|
[19] |
R. Iezzi, M. Santoro, R. Marano, et al., Low-dose multidetector CT angiography in the evaluation of infrarenal aorta and peripheral arterial occlusive disease, Radiology 263 (2012) 287-298.
|
[20] |
T.I. Kostelnik, C. Orvig, Radioactive main group and rare earth metals for imaging and therapy, Chem. Rev. 119 (2019) 902-956.
|
[21] |
D. Kim, J.H. Lee, H. Moon, et al., Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model, Theranostics 11 (2021) 79-92.
|
[22] |
S. Tehrani Fateh, L. Moradi, E. Kohan, et al., Comprehensive review on ultrasound-responsive theranostic nanomaterials: Mechanisms, structures and medical applications, Beilstein J. Nanotechnol. 12 (2021) 808-862.
|
[23] |
A. Yildirim, N.T. Blum, A.P. Goodwin, Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS), Theranostics 9 (2019) 2572-2594.
|
[24] |
M.W.N. Burns, R.F. Mattrey, J. Lux, Microbubbles cloaked with hydrogels as activatable ultrasound contrast agents, ACS Appl. Mater. Interfaces 12 (2020) 52298-52306.
|
[25] |
D. Cui, M. Ding, Z. Wang, et al., 360° open-ended and navigated magnetic resonance-guided microwave ablation for hepatic tumors in risk areas, J. Cancer Res. Ther. 18 (2022) 1286-1291.
|
[26] |
M.F. Meloni, G. Francica, J. Chiang, et al., Use of contrast-enhanced ultrasound in ablation therapy of HCC: Planning, guiding, and assessing treatment response, J. Ultrasound Med. 40 (2021) 879-894.
|
[27] |
J. Wu, G. Ma, Recent studies of Pickering emulsions: Particles make the difference, Small 12 (2016) 4633-4648.
|
[28] |
D.J. McClements, C.E. Gumus, Natural emulsifiers-Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance, Adv. Colloid Interface Sci. 234 (2016) 3-26.
|
[29] |
L. Yao, Y. Wang, Y. He, et al., Pickering emulsions stabilized by conjugated zein-soybean polysaccharides nanoparticles: Fabrication, characterization and functional performance, Polymers (Basel) 15 (2023), 4474.
|
[30] |
Z. Li, W. Xu, J. Yang, et al., A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation, Adv. Mater. 34 (2022), e2200449.
|
[31] |
Y. Zhao, Z. Zhang, Z. Pan, et al., Advanced bioactive nanomaterials for biomedical applications, Exploration (Beijing) 1 (2021), 20210089.
|
[32] |
H. Chen, H. Zhu, J. Hu, et al., Highly compressed assembly of deformable nanogels into nanoscale suprastructures and their application in nanomedicine, ACS Nano 5 (2011) 2671-2680.
|
[33] |
H. Li, K. Qian, H. Zhang, et al., Pickering gel emulsion of lipiodol stabilized by hairy nanogels for intra-artery embolization antitumor therapy, Chem. Eng. J. 418 (2021), 129534.
|
[34] |
W. Meng, H. Sun, T. Mu, et al., Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations, Carbohydr. Polym. 304 (2023), 120491.
|
[35] |
N. Xia, X. Lu, Z. Zheng, et al., Study on preparation of acylated soy protein and stability of emulsion, J. Sci. Food Agric. 101 (2021) 4959-4968.
|
[36] |
W. Xiong, W. Wang, Y. Wang, et al., Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy, Colloids Surf. B Biointerfaces 84 (2011) 447-453.
|
[37] |
H. Zhou, W. Xie, A. Guo, et al., Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization, Des. Monomers Polym. 26 (2023) 31-44.
|
[38] |
W. Xie, H. Li, H. Yu, et al., A thermosensitive Pickering gel emulsion with a high oil-water ratio for long-term X-ray imaging and permanent embolization of arteries, Nanoscale 15 (2023) 1835-1848.
|
[39] |
S. Capece, F. Domenici, F. Brasili, et al., Complex interfaces i Phys. 18 (2016) 8378-8388.
|
[40] |
U. Goncin, L. Curiel, C.R. Geyer, et al., Aptamer-functionalized microbubbles targeted to P-selectin for ultrasound molecular imaging of murine bowel inflammation, Mol. Imaging Biol. 25 (2023) 283-293.
|
[41] |
V. Pathak, K. Roemhild, S. Schipper, et al., Theranostic trigger-responsive carbon monoxide-generating microbubbles, Small 18 (2022), e2200924.
|
[42] |
K.G. Brown, J. Li, R. Margolis, et al., Assessment of transarterial chemoembolization using super-resolution ultrasound imaging and a rat model of hepatocellular carcinoma, Ultrasound Med. Biol. 49 (2023) 1318-1326.
|
[43] |
J. Rong, M. Liang, F. Xuan, et al., Alginate-calcium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization, Int. J. Biol. Macromol. 75 (2015) 479-488.
|
[44] |
S.I. Jeon, M.S. Kim, H.J. Kim, et al., Biodegradable poly(lactide-co-glycolide) microspheres encapsulating hydrophobic contrast agents for transarterial chemoembolization, J. Biomater. Sci. Polym. Ed. 33 (2022) 409-425.
|
[45] |
K.H. Hillebrandt, H. Everwien, N. Haep, et al., Strategies based on organ decellularization and recellularization, Transpl. Int. 32 (2019) 571-585.
|
[46] |
B.E. Uygun, A. Soto-Gutierrez, H. Yagi, et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nat. Med. 16 (2010) 814-820.
|
[47] |
D.A. Taylor, S.M. Kren, K. Rhett, et al., Characterization of perfusion decellularized whole animal body, isolated organs, and multi-organ systems for tissue engineering applications, Physiol. Rep. 9 (2021), e14817.
|
[48] |
A.D. Pospelov, O.M. Kutova, Y.M. Efremov, et al., Breast cancer cell type and biomechanical properties of decellularized mouse organs drives tumor cell colonization, Cells 12 (2023), 2030.
|
[49] |
M. He, A. Callanan, K. Lagaras, et al., Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys, J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017) 1352-1360.
|
[50] |
H. Tang, C. Cao, G. Zhang, et al., Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor, Drug Deliv. 30 (2023) 1-16.
|
[51] |
H. Chen, C. Xie, Y. Li, et al., Evaluation of the safety and efficacy of transarterial sevelamer embolization in a rabbit liver cancer model: A challenge on the size rule for vascular occlusion, Front. Bioeng. Biotechnol. 10 (2022), 1058042.
|
[52] |
H. Zhang, Y. Ren, H. Li, et al., Renal and hepatic artery embolization with Pickering gel emulsion of lipiodol in rabbit, BMC Cancer 22 (2022), 1300.
|
[53] |
L. Li, Y. Cao, H. Zhang, et al., Temperature sensitive nanogel-stabilized Pickering emulsion of fluoroalkane for ultrasound guiding vascular embolization therapy, J. Nanobiotechnology 21 (2023), 413.
|
[54] |
S. Bhattacharya, V.K. Parihar, B.G. Prajapati, Unveiling the therapeutic potential of cabozantinib-loaded poly D, L-lactic-co-glycolic acid and polysarcosine nanoparticles in inducing apoptosis and cytotoxicity in human HepG2 hepatocellular carcinoma cell lines and in vivo anti-tumor activity in SCID female mice, Front. Oncol. 13 (2023), 1125857.
|
[55] |
M. Ghahremani-Nasab, N. Akbari-Gharalari, A. Rahmani Del Bakhshayesh, et al., Synergistic effect of chitosan-alginate composite hydrogel enriched with ascorbic acid and alpha-tocopherol under hypoxic conditions on the behavior of mesenchymal stem cells for wound healing, Stem Cell Res. Ther. 14 (2023), 326.
|
[56] |
R. Sobreiro-Almeida, M. Gomez-Florit, R. Quinteira, et al., Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro, Biofabrication 13 (2021), 045006.
|
[57] |
X. Gao, Z. Chen, Z. Chen, et al., Visualization and evaluation of chemoembolization on a 3D decellularized organ scaffold, ACS Biomater. Sci. Eng. 7 (2021) 5642-5653.
|
[58] |
L. Li, Y. Liu, H. Li, et al., Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization, Theranostics 8 (2018) 6291-6306.
|
[59] |
Q. Zhao, L. Zhang, Q. He, et al., Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways, J. Zhejiang Univ. Sci. B 24 (2023) 50-63.
|
[60] |
A.K. Kai, L.K. Chan, R.C. Lo, et al., Down-regulation of TIMP2 by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma, Hepatology 64 (2016) 473-487.
|
[61] |
A. Longchamp, T. Mirabella, A. Arduini, et al., Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production, Cell 173 (2018),117-129.e14.
|