Citation: | Zeshan Ali, Aqsa Ayub, Yawen Lin, Sonam Anis, Ishrat Khan, Shoaib Younas, Rana Adnan Tahir, Shulin Wang, Jianrong Li. Lycium barbarum's diabetes secrets: A comprehensive review of cellular, molecular, and epigenetic targets with immune modulation and microbiome influence[J]. Journal of Pharmaceutical Analysis, 2025, 15(5): 101130. doi: 10.1016/j.jpha.2024.101130 |
Diabetes, a metabolic disease stemming from impaired or defective insulin secretion, ranks among the most severe chronic illnesses globally. While several approved drugs exist for its treatment, they often come with multiple side effects. Therefore, there is a pressing need for safe and effective anti-diabetic medications. Traditional Chinese medicine has recognized Lycium barbarum (LB; goji berry) plant, commonly known as “wolfberry fruit” in China, for over 2,000 years. Natural compounds derived from LB show promise in reducing diabetes levels. Although research on the impact of LB on diabetes is still limited, our review aims to explore the potential of LB in reducing the risk of diabetes and examine the underlying mechanisms involved. LB can modulate diabetes through various pathways, such as inhibiting α-amylase and α-glucosidase activities, promoting β-cell proliferation, stimulating insulin secretion, inhibiting glucagon secretion, improving insulin resistance and glucose tolerance, and enhancing antioxidant and anti-inflammatory activities. Additionally, LB improves gut flora and immunomodulation, further aiding diabetes management. These findings highlight the potential clinical utility of LB in managing diabetes and its complications within the framework of evidence-based modern medicine.
[1] |
U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, et al., Pathophysiology of type 2 diabetes mellitus, Int. J. Mol. Sci. 21 (2020) 6275.
|
[2] |
T. Vos, S.S. Lim, C. Abbafati, et al., Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019, Lancet 396 (2020) 1204-1222.
|
[3] |
A. Afroz, M.J. Alramadan, M.N. Hossain, et al., Cost-of-illness of type 2 diabetes mellitus in low and lower-middle income countries: A systematic review, BMC Health Serv. Res. 18 (2018) 1-10.
|
[4] |
G.M.D. Collaborators, Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019, Lancet Psychiatr. 9 (2022) 137-150.
|
[5] |
R. Huang, E. Wu, X. Deng, Potential of Lycium barbarum polysaccharide for the control of glucose and lipid metabolism disorders: A review, Int. J. Food Prop. 25 (2022) 673-680.
|
[6] |
D. Gao, Q. Li, Effects of Lycium barbarum L. root bark extract on alloxan-induced diabetic mice, Clin. Pract. 4 (2007) 547.
|
[7] |
A. Wojdylo, P. Nowicka, P. Babelewski, Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties, J. Funct.Foods 48 (2018) 632-642.
|
[8] |
S. Leontopoulos, P. Skenderidis, H. Kalorizou, et al., Bioactivity potential of polyphenolic compounds in human health and their effectiveness against various food borne and plant pathogens. A review, J. Food Biosyst. Eng. 7 (2017) 1-19.
|
[9] |
A.A. Choudhury, V.D. Rajeswari, Gestational diabetes mellitus-a metabolic and reproductive disorder, Biomed. Pharmacother. 143 (2021) 112183.
|
[10] |
W.T. Cade, Diabetes-related microvascular and macrovascular diseases in the physical therapy setting, Phys. Ther. 88 (2008) 1322-1335.
|
[11] |
D.J. Magliano, E.J. Boyko, IDF Diabetes Atlas 10th Edition Scientific Committee, IDF Diabetes Atlas, tenth ed., International Diabetes Federation, Brussels, 2021. (Chapter 3), Global picture. https://www.ncbi.nlm.nih.gov/books/NBK581940/. (Accessed 24 April 2024).
|
[12] |
R. Zhao, B. Qiu, Q. Li, et al., LBP-4a improves insulin resistance via translocation and activation of GLUT4 in OLETF rats, Food Funct. 5 (2014) 811-820.
|
[13] |
W. Zeng, L. Chen, Y. Li, et al., The effect of in vitro digestion on the chemical and antioxidant properties of Lycium barbarum polysaccharides, Food Hydrocolloids 139 (2023) 108507.
|
[14] |
F. Teixeira, A.M. Silva, C. Delerue-Matos, et al., Lycium barbarum berries (solanaceae) as source of bioactive compounds for healthy purposes: A review, Int. J. Mol. Sci. 24 (2023) 4777.
|
[15] |
J. Zhu, W. Liu, J. Yu, et al., Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L, Carbohydr. Polym. 98 (2013) 8-16.
|
[16] |
J. Wu, T. Chen, F. Wan, et al., Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity, Int. J. Biol. Macromol. 176 (2021) 352-363.
|
[17] |
F. Zhou, X. Jiang, T. Wang, et al., Lycium barbarum polysaccharide (LBP): A novel prebiotics candidate for Bifidobacterium and Lactobacillus, Front. Microbiol. 9 (2018) 1034.
|
[18] |
X. Li, X. Li, A. Zhou, Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro, Eur. Polym. J. 43 (2007) 488-497.
|
[19] |
R.-f. Yang, C. Zhao, X. Chen, et al., Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods, J. Funct.Foods 17 (2015) 903-909.
|
[20] |
R. Muatasim, H. Ma, X. Yang, Effect of multimode ultrasound assisted extraction on the yield of crude polysaccharides from Lycium barbarum (Goji), Food Sci. Technol. 38 (2018) 160-166.
|
[21] |
Z. Liu, J. Dang, Q. Wang, et al., Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity, Int. J. Biol. Macromol. 61 (2013) 127-134.
|
[22] |
P.-p. Huang, R.-f. Yang, T.-q. Qiu, et al., Ultrasound-enhanced subcritical water extraction of volatile oil from Lithospermum erythrorhizon, Separ. Sci. Technol. 45 (2010) 1433-1439.
|
[23] |
J. Liu, J. Meng, J. Du, et al., Preparative separation of flavonoids from Goji berries by mixed-mode macroporous adsorption resins and effect on Aβ-expressing and anti-aging genes, Molecules 25 (2020) 3511.
|
[24] |
J. Yu, Y. Yan, L. Zhang, et al., A comprehensive review of goji berry processing and utilization, Food Sci. Nutr. 11 (2023) 7445-7457.
|
[25] |
G.M. Nardi, A.G.F. Januario, C.G. Freire, et al., Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation, Pharmacogn. Res. 8 (2016) S42.
|
[26] |
M. Protti, I. Gualandi, R. Mandrioli, et al., Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries, J. Pharm. Biomed. Anal. 143 (2017) 252-260.
|
[27] |
T. Ilic, M. Dodevska, M. Marcetic, et al., Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia, Foods 9 (2020) 1614.
|
[28] |
D. Donno, G.L. Beccaro, M.G. Mellano, et al., Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation, J. Funct.Foods 18 (2015) 1070-1085.
|
[29] |
T.C. Pires, M.I. Dias, L. Barros, et al., Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits, Ind. Crops Prod. 122 (2018) 574-581.
|
[30] |
Z. Endes, N. Uslu, M.M. Ozcan, et al., Physico-chemical properties, fatty acid composition and mineral contents of goji berry (Lycium barbarum L.) fruit, J. Agroaliment. Process. Technol. 21 (2015) 36-40.
|
[31] |
S.C. Lee, L. Prosky, J.W.D. Vries, Determination of total, soluble, and insoluble dietary fiber in foods-enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study, J. AOAC Int. 75 (1992) 395-416.
|
[32] |
J. Ni, M. Au, H. Kong, et al., Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: A systematic review, BMC Complement. Med. Ther. 21 (2021) 1-16.
|
[33] |
H.-L. Tang, C. Chen, S.-K. Wang, et al., Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L, Int. J. Biol. Macromol. 77 (2015) 235-242.
|
[34] |
W. Hao, S.-f. Wang, J. Zhao, et al., Effects of extraction methods on immunology activity and chemical profiles of Lycium barbarum polysaccharides, J. Pharm. Biomed. Anal. 185 (2020) 113219.
|
[35] |
S. Zhou, R. Md Atikur, J. Li, et al., Extraction methods affect the structure and bioactivity of goji (Lycium barbarum) polysaccharides, Molecules 4 (2020) 936.
|
[36] |
W. Ma, Y. Zhou, W. Lou, et al., Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum, Food Biosci. 47 (2022) 101664.
|
[37] |
B.S. Inbaraj, H. Lu, T. Kao, et al., Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS, J. Pharm. Biomed. Anal. 51 (2010) 549-556.
|
[38] |
K. Le, F. Chiu, K.J.F.C. Ng, Identification and quantification of antioxidants in Fructus lycii, Food Chem. 105 (2007) 353-363.
|
[39] |
J.-Y. Qian, D. Liu, A.-G.J.F.C. Huang, The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger, Food Chem. 87 (2004) 283-288.
|
[40] |
A. Mocan, F. Cairone, M. Locatelli, et al., Polyphenols from Lycium barbarum (goji) fruit European cultivars at different maturation steps: Extraction, HPLC-DAD analyses, and biological evaluation, Antioxidants 8 (2019) 562.
|
[41] |
G. Rocchetti, G. Chiodelli, G. Giuberti, et al., UHPLC-ESI-QTOF-MS profile of polyphenols in goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation, J. Funct.Foods 40 (2018) 564-572.
|
[42] |
A.C. Pedro, J.B.B. Maurer, S.F. Zawadzki-Baggio, et al., Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil, Ind. Crops Prod. 112 (2018) 90-97.
|
[43] |
Y.-L. Ma, Y. Wang, Z.-F. Wu, et al., Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract, Food Biosci. 51 (2023) 102255.
|
[44] |
T. Hussain, B. Tan, G. Murtaza, et al., Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy, Pharmacol. Res. 152 (2020) 104629.
|
[45] |
Y. Peng, C. Ma, Y. Li, et al., Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii), Plant Foods Hum. Nutr. 60 (2005) 161-164.
|
[46] |
Z. Li, G. Peng, S Zhang, Separation and determination of carotenoids in Fructus lycii by isocratic non-aqueous reversed-phase liquid chromatography, Chin. J. Chromatogr. 16 (1998) 341-343.
|
[47] |
P. Weller, D.E.J.J.o.A. Breithaupt, F. Chemistry, Identification and quantification of zeaxanthin esters in plants using liquid chromatography− mass spectrometry, J. Agric. Food Chem.51 (2003) 7044-7049.
|
[48] |
B.S. Inbaraj, H. Lu, C. Hung, et al., Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS, J. Pharm. Biomed. Anal. 47 (2008) 812-818.
|
[49] |
M.J. Mi Jia, L.L. Lu Lu, D.G. Dai GuoLi, et al., Correlations between skin color and carotenoid contents in wolfberry, Food Sci. (N. Y.) 16 (2018) 81-86.
|
[50] |
Z. Yu, M. Xia, X. Li, et al., Characterization of carotenoids in Lycium barbarum fruit by using UPC2-PDA-Q-TOF-MSE couple with deep eutectic solvents extraction and evaluation of their 5α-reductase inhibitory activity, Front. Chem. 10 (2022) 1052000.
|
[51] |
A. Karioti, M.C. Bergonzi, F.F. Vincieri, et al., Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate, J. Agric. Food Chem. 62 (2014) 12529-12535.
|
[52] |
P. Bora, S. Ragaee, E.-S.M. Abdel-Aal, Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products, LWT 112 (2019) 108225.
|
[53] |
A.C. Pedro, M.-C. Sanchez-Mata, M.L. Perez-Rodriguez, et al., Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems, Sci. Hortic. 257 (2019) 108660.
|
[54] |
S. Niro, A. Fratianni, G. Panfili, et al., Nutritional evaluation of fresh and dried goji berries cultivated in Italy, Ital. J. Food Sci. 29 (2017) 398.
|
[55] |
S. Ahmadi, C. Yu, D. Zaeim, et al., Increasing RG-I content and lipase inhibitory activity of pectic polysaccharides extracted from goji berry and raspberry by high-pressure processing, Food Hydrocolloids. 126 (2022) 107477.
|
[56] |
P. Skenderidis, D. Lampakis, I. Giavasis, et al., Chemical properties, fatty-acid composition, and antioxidant activity of goji berry (Lycium barbarum L. and Lycium chinense Mill.) fruits, Antioxidants 8 (2019) 60.
|
[57] |
X. Chi, Y. Xiao, Q. Dong, et al., Fatty acid composition of Lycium ruthenicum collected from the Qinghai-Tibetan plateau, Chem. Nat. Compd. 52 (2016) 674-675.
|
[58] |
S.-Y. Liu, L. Chen, X.-C. Li, et al., Lycium barbarum polysaccharide protects diabetic peripheral neuropathy by enhancing autophagy via mTOR/p70S6K inhibition in Streptozotocin-induced diabetic rats, J. Chem. Neuroanat. 89 (2018) 37-42.
|
[59] |
J. Kulaitiene, N. Vaitkeviciene, E. Jariene, et al., Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania, Biol. Agric. Hortic. 36 (2020) 130-140.
|
[60] |
I. Gogoasa, L. Alda, M. Rada, et al., Goji berries (Lycium barbarum) as a source of trace elements in human nutrition, J. Agroaliment. Process. Technol. 20 (2014) 369-372.
|
[61] |
E. Llorent-Martinez, M. Fernandez-de Cordova, P. Ortega-Barrales, et al., Characterization and comparison of the chemical composition of exotic superfoods, Microchem. J. 110 (2013) 444-451.
|
[62] |
M. Zhang, X. Tang, F. Wang, et al., Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells, Int. J. Biol. Macromol. 61 (2013) 270-275.
|
[63] |
B.B. Vidovic, D.D. Milincic, M.D. Marcetic, et al., Health benefits and applications of goji berries in functional food products development: A review, Antioxidants 11 (2022) 248.
|
[64] |
X. Deng, Q. Liu, Y. Fu, et al., Effects of Lycium barbarum polysaccharides with different molecular weights on function of RAW264.7 macrophages, Food Agric. Immunol. 29 (2018) 808-820.
|
[65] |
B. Tian, Z. Zhang, J. Zhao, et al., Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice, Int. J. Food Sci. Technol. 56 (2021) 103-114.
|
[66] |
X. Yang, H. Bai, W. Cai, et al., Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats, Chem. Biol. Interact. 204 (2013) 166-172.
|
[67] |
L. Feng, X. Xiao, J. Liu, et al., Immunomodulatory effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level, Molecules 25 (2020) 1351.
|
[68] |
H. Lu, P. Liu, X. Zhang, et al., Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats, J. Funct.Foods 79 (2021) 104407.
|
[69] |
H. Li, W. Tao, X. Xu, et al., Lycium barbarum polysaccharides alleviate pancreatic β-cells apoptosis through the inhibition of IFNγ pathway, J. Funct.Foods 107 (2023) 105706.
|
[70] |
J. Xiao, E.C. Liong, Y.P. Ching, et al., Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation, J. Ethnopharmacol. 139 (2012) 462-470.
|
[71] |
X.-r. Zhang, C.-h. Qi, J.-p. Cheng, et al., Lycium barbarum polysaccharide LBPF4-OL may be a new Toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer, Int. Immunopharm. 19 (2014) 132-141.
|
[72] |
W. Xia, X. Li, I. Khan, et al., Lycium berry polysaccharides strengthen gut microenvironment and modulate gut microbiota of the mice, Evid. Based Complement. Alternat. Med. 2020 (2020) 8097021.
|
[73] |
R. Zhao, X. Gao, T. Zhang, et al., Effects of Lycium barbarum polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms, Iran. J. Basic Med. Sci. 19 (2016) 1024.
|
[74] |
J. Yin, T. Wu, Anthocyanins from black wolfberry (Lycium ruthenicum Murr.) prevent inflammation and increase fecal fatty acid in diet-induced obese rats, RSC Adv. 7 (2017) 47848-47853.
|
[75] |
H. Kim, L. Rahmawati, Y.H. Hong, et al., Immunostimulatory effects of complex GPB through increased TNF-α expression and NK cell activation, Phcog. Mag. 18 (2022).
|
[76] |
P. Skenderidis, C. Mitsagga, D. Lampakis, et al., The effect of encapsulated powder of goji berry (Lycium barbarum) on growth and survival of probiotic bacteria, Microorganisms 8 (2019) 57.
|
[77] |
A.J. Al-Fartosy, Protective effect of galactomannan extracted from Iraqi Lycium barbarum L. fruits against alloxan-induced diabetes in rats, Am. J. Biochem. Biotechnol. 11 (2015) 73.
|
[78] |
P. Skenderidis, E. Kerasioti, E. Karkanta, et al., Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation, Toxicol Rep 5 (2018) 251-257.
|
[79] |
A. Peraza-Labrador, D.M. Buitrago, E. Coy-Barrera, et al., Antiproliferative and pro-apoptotic effects of a phenolic-rich extract from Lycium barbarum fruits on human papillomavirus (HPV) 16-positive head cancer cell lines, Molecules 27 (2022) 3568.
|
[80] |
W. Zhu, S. Zhou, J. Liu, et al., Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide, Biomed. Pharmacother. 121 (2020) 109591.
|
[81] |
H. Cai, X. Yang, Q. Cai, et al., Lycium barbarum L. polysaccharide (LBP) reduces glucose uptake via down-regulation of SGLT-1 in Caco2 cell, Molecules 22 (2017) 341.
|
[82] |
D. Changbo, S. Zhaojun, Supplementation of Lycium barbarum polysaccharides protection of skeletal muscle from exercise-induced oxidant stress in mice, Afr. J. Pharm. Pharmacol. 6 (2012) 643-647.
|
[83] |
H. Hsu, R. Huang, T. Kao, et al., Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells, Nanotechnology 28 (2017) 135103.
|
[84] |
Y. Liu, H. Fang, H. Liu, et al., Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice, J. Funct.Foods 83 (2021) 104491.
|
[85] |
G. Brecchia, M. Sulce, G. Curone, et al., Goji berry (Lycium barbarum) supplementation during pregnancy influences insulin sensitivity in rabbit does but not in their offspring, Animals 12 (2021) 39.
|
[86] |
A.K. Ruiz-Salinas, R.A. Vazquez-Roque, A. Diaz, et al., The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats, J. Nutr. Biochem. 83 (2020) 108416.
|
[87] |
J. Molnar, N. Gyemant, I. Mucsi, et al., Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids, In Vivo 18 (2004) 237-244.
|
[88] |
H. Amagase, D.M. Nance, A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) juice, GoChi™, J. Altern. Complement. Med. 14 (2008) 403-412.
|
[89] |
H. Cai, F. Liu, P. Zuo, et al., Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes, Med. Chem. 11 (2015) 383-390.
|
[90] |
H. Yu, L. Wark, H. Ji, et al., Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice, Mol. Nutr. Food Res. 57 (2013) 1158-1169.
|
[91] |
Q. Luo, Y. Cai, J. Yan, et al., Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum, Life Sci. 76 (2004) 137-149.
|
[92] |
R. Zhao, Q.-w. Li, J. Li, et al., Protective effect of Lycium barbarum polysaccharide 4 on kidneys in streptozotocin-induced diabetic rats, Can. J. Physiol. Pharmacol. 87 (2009) 711-719.
|
[93] |
L. Tang, Y. Zhang, Y. Jiang, et al., Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes, Exp. Biol. Med. 236 (2011) 1051-1063.
|
[94] |
Z. Zhang, X. Liu, X. Zhang, et al., Comparative evaluation of the antioxidant effects of the natural vitamin C analog 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from Goji berry fruit, Arch Pharm. Res. (Seoul) 34 (2011) 801-810.
|
[95] |
J. Xiao, F. Xing, J. Huo, et al., Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model, Sci. Rep. 4 (2014) 5587.
|
[96] |
D.W.K. Toh, X. Xia, C.N. Sutanto, et al., Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial, Am. J. Clin. Nutr. 114 (2021) 80-89.
|
[97] |
K. Vidal, P. Bucheli, Q. Gao, et al., Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: A randomized, double-blind, placebo-controlled trial, Rejuvenation Res. 15 (2012) 89-97.
|
[98] |
Q. Zhao, J. Li, J. Yan, et al., Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits, Life Sci. 157 (2016) 82-90.
|
[99] |
D.W.K. Toh, W.Y. Lee, H. Zhou, et al., Wolfberry (Lycium barbarum) consumption with a healthy dietary pattern lowers oxidative stress in middle-aged and older adults: A randomized controlled trial, Antioxidants 10 (2021) 567.
|
[100] |
H. Amagase, B. Sun, D.M. Nance, Immunomodulatory effects of a standardized Lycium barbarum fruit juice in Chinese older healthy human subjects, J. Med. Food 12 (2009) 1159-1165.
|
[101] |
W. Zhou, T. Yang, W. Xu, et al., The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier, Carbohydr. Polym. 291 (2022) 119626.
|
[102] |
P. Bucheli, K. Vidal, L. Shen, et al., Goji berry effects on macular characteristics and plasma antioxidant levels, Optom. Vis. Sci. 88 (2011) 257-262.
|
[103] |
H. Amagase, B. Sun, C. Borek, Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults, Nutr. Res. 29 (2009) 19-25.
|
[104] |
D.-H. Yu, J.-M. Wu, A.-J. Niu, Health-promoting effect of LBP and healthy Qigong exercise on physiological functions in old subjects, Carbohydr. Polym. 75 (2009) 312-316.
|
[105] |
C.Y. Cheng, W.Y. Chung, Y.T. Szeto, et al., Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; Kei Tze) in a food-based human supplementation trial, Br. J. Nutr. 93 (2005) 123-130.
|
[106] |
N. Eguchi, N.D. Vaziri, D.C. Dafoe, et al., The role of oxidative stress in pancreatic β cell dysfunction in diabetes, Int. J. Mol. Sci. 22 (2021) 1509.
|
[107] |
A. Kruczek, I. Ochmian, M. Krupa-Malkiewicz, et al., Comparison of morphological, antidiabetic and antioxidant properties of goji fruits, Food Technol. 24 (2020) 1-14.
|
[108] |
A. Hameed, M. Galli, E. Adamska-Patruno, et al., Select polyphenol-rich berry consumption to defer or deter diabetes and diabetes-related complications, Nutrients 12 (2020) 2538.
|
[109] |
V. Sicari, R. Romeo, A. Mincione, et al., Ciabatta bread incorporating goji (Lycium barbarum L.): A new potential functional product with impact on human health, Foods 12 (2023) 566.
|
[110] |
A. Mocan, G. Zengin, M. Simirgiotis, et al., Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies, J. Enzym. Inhib. Med. Chem. 32 (2017) 153-168.
|
[111] |
T. Wang, X. Li, B. Zhou, et al., Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.), J. Funct.Foods 13 (2015) 276-288.
|
[112] |
Z. Wang, L. Sun, Z. Fang, et al., Lycium ruthenicum Murray anthocyanins effectively inhibit α-glucosidase activity and alleviate insulin resistance, Food Biosci. 41 (2021) 100949.
|
[113] |
I. Parmar, H. Rupasinghe, Antioxidant capacity and anti-diabetic activity of wild berry stem infusions, Eur. J. Med. Plants 8 (2015) 11-28.
|
[114] |
W. Parklak, S. Ounjaijean, K. Kulprachakarn, et al., In vitro α-amylase and α-glucosidase inhibitory effects, antioxidant activities, and lutein content of nine different cultivars of marigold flowers (Tagetes spp.), Molecules 28 (2023) 3314.
|
[115] |
M.A. Martin-Cabrejas, B. Sanfiz, A. Vidal, et al., Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.), J. Agric. Food Chem. 52 (2004) 261-266.
|
[116] |
E.-O. Kim, M.-H. Yu, Y.-J. Lee, et al., Comparison of functional constituents and biological activity of the seed extracts from two mulberry fruits, Nutr. Food Sci. 15 (2010) 98-104.
|
[117] |
K. Papoutsis, J. Zhang, M.C. Bowyer, et al., Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review, Food Chem. 338 (2021) 128119.
|
[118] |
C. Carrasco-Pozo, M.L. Mizgier, H. Speisky, et al., Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells, Chem. Biol. Interact. 195 (2012) 199-205.
|
[119] |
M. Song, N.K. Salam, B.D. Roufogalis, et al., Lycium barbarum (goji berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment, Biochem. Pharmacol. 82 (2011) 1209-1218.
|
[120] |
A. De Luca, S. Pierno, D.C. Camerino, Taurine: The appeal of a safe amino acid for skeletal muscle disorders, J. Transl. Med. 13 (2015) 1-18.
|
[121] |
M.H. Johnson, E.G. De Mejia, Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic β-cells in vitro, J. Agric. Food Chem. 64 (2016) 2569-2581.
|
[122] |
L.D. Crepaldi, I.R. Mariano, A. Trondoli, et al., Goji berry (Lycium barbarum) extract improves biometric, plasmatic and hepatic parameters of rats fed a high-carbohydrate diet, J. Pharm. Pharmacol. 6 (2018) 877-889.
|
[123] |
M. Du, X. Hu, L. Kou, et al., Lycium barbarum polysaccharide mediated the antidiabetic and antinephritic effects in diet-streptozotocin-induced diabetic Sprague Dawley rats via regulation of NF-κB, BioMed Res. Int. 2016 (2016) 3140290.
|
[124] |
Q. Liu, Q. Han, M. Lu, et al., Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats, Exp. Ther. Med. 18 (2019) 509-516.
|
[125] |
A. Calvano, K. Izuora, E.C. Oh, et al., Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials, Food Funct. 10 (2019) 6227-6243.
|
[126] |
S. Tsalamandris, A.S. Antonopoulos, E. Oikonomou, et al., The role of inflammation in diabetes: Current concepts and future perspectives, Eur. Cardiol. 14 (2019) 50.
|
[127] |
C.N. Avila, F.M.R. Trindade, J.O. Penteado, et al., Anti-inflammatory effect of a goji berry extract (Lycium barbarum) in rats subjected to inflammation by lipopolysaccharides (LPS), Braz. Arch. Biol. Technol. 63 (2020) e20180612.
|
[128] |
V. Magalhaes, A.R. Silva, B. Silva, et al., Comparative studies on the anti-neuroinflammatory and antioxidant activities of black and red goji berries, J. Funct.Foods 92 (2022) 105038.
|
[129] |
L. Xiong, N. Deng, B. Zheng, et al., Goji berry (Lycium spp.) extracts exhibit antiproliferative activity via modulating cell cycle arrest, cell apoptosis, and the p53 signaling pathway, Food Funct. 12 (2021) 6513-6525.
|
[130] |
R. Zhang, K.A. Kang, M.J. Piao, et al., Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity, J. Ethnopharmacol.l130 (2010) 299-306.
|
[131] |
H. Li, Z. Li, L. Peng, et al., Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage, Free Radic. Res. 51 (2017) 200-210.
|
[132] |
M. Song, B.D. Roufogalis, T.H.-W.J.E.-B.C. Huang, et al., Reversal of the caspase-dependent apoptotic cytotoxicity pathway by taurine from Lycium barbarum (Goji Berry) in human retinal pigment epithelial cells: Potential benefit in diabetic retinopathy, Evid. -Based Complement Alternative Med. 1 (2012) 323784.
|
[133] |
K. Chen, Q. Zhang, J. Wang, et al., Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction, Brain Res. 1279 (2009) 131-138.
|
[134] |
H. Ji, J. Ma, L. Guo, et al., Amino acid sequence identification of goji berry cyclic peptides and anticervical carcinoma activity detection, J. Pept. Sci. 27 (2021) e3326.
|
[135] |
M. Takakura, A. Mizutani, M. Kudo, et al., Goji berry juice prevents tumor necrosis factor alpha-induced xerostomia in human salivary gland cells, Biol. Pharm. Bull. 47 (2024) 138-144.
|
[136] |
A. Wawruszak, M. Halasa, K. Okla, Lycium Barbarum (Goji Berry), Human Breast Cancer, and Antioxidant Profile, second ed., Cancer (Elsevier), Academic Press, U.K, 2021, pp. 399-406.
|
[137] |
Q. Sun, M. Du, Y. Kang, et al., Prebiotic effects of goji berry in protection against inflammatory bowel disease, Crit. Rev. Food Sci. Nutr. 63 (2023) 5206-5230.
|
[138] |
L. Xiong, N. Deng, B. Zheng, et al., HSF-1 and SIR-2.1 linked insulin-like signaling is involved in goji berry (Lycium spp.) extracts promoting lifespan extension of Caenorhabditis elegans, Food Funct. 12 (2021) 7851-7866.
|
[139] |
Y. Ding, Y. Yan, D. Chen, et al., Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice, Food Funct. 10 (2019) 3671-3683.
|
[140] |
X.R. Zhang, W.X. Zhou, Y.X. Zhang, et al., Macrophages, rather than T and B cells, are principal immunostimulatory target cells of Lycium barbarum L. polysaccharide LBPF4-OL, J. Ethnopharmacol. 11 (2011) 465-472.
|
[141] |
J.M. Wong, Gut microbiota and cardiometabolic outcomes: Influence of dietary patterns and their associated components, Am. J. Clin. Nutr. 100 (2014) 369S-377S.
|
[142] |
H.R. Rocha, M.C. Coelho, A.M. Gomes, et al., Carotenoids diet: Digestion, gut microbiota modulation, and inflammatory diseases, Nutrients 15 (2023) 2265.
|
[143] |
P. Oteiza, C.G. Fraga, D. Mills, et al., Flavonoids and the gastrointestinal tract: Local and systemic effects, Mol. Aspect. Med. 61 (2018) 41-49.
|
[144] |
D. Sfairopoulos, S. Liatis, S. Tigas, et al., Clinical pharmacology of glucagon-like peptide-1 receptor agonists, Hormones (Basel) 17 (2018) 333-350.
|
[145] |
Q.Y. Ang, M. Alexander, J.C. Newman, et al., Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells, Cell 181 (2020) 1263-1275.
|
[146] |
N.G. Barra, F.F. Anhe, J.F. Cavallari, et al., Micronutrients impact the gut microbiota and blood glucose, J. Endocrinol. 250 (2021) R1-R21.
|
[147] |
L. Guo, Q. Guan, W. Duan, et al., Dietary goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake, Front. Nutr. 9 (2022) 929776.
|
[148] |
X. Li, R.R. Holt, C.L. Keen, et al., Goji berry intake increases macular pigment optical density in healthy adults: A randomized pilot trial, Nutrients 13 (2021) 4409.
|
[149] |
M.Z. de Souza Zanchet, G.M. Nardi, L. de Oliveira Souza Bratti, et al., Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome, Oxid. Med. Cell. Longev. 1 (2017) 9763210.
|