Volume 15 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
ShanShan Hu, Zahra Batool, Xin Zheng, Yin Yang, Amin Ullah, Bairong Shen. Exploration of innovative drug repurposing strategies for combating human protozoan diseases: Advances, challenges, and opportunities[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101084. doi: 10.1016/j.jpha.2024.101084
Citation: ShanShan Hu, Zahra Batool, Xin Zheng, Yin Yang, Amin Ullah, Bairong Shen. Exploration of innovative drug repurposing strategies for combating human protozoan diseases: Advances, challenges, and opportunities[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101084. doi: 10.1016/j.jpha.2024.101084

Exploration of innovative drug repurposing strategies for combating human protozoan diseases: Advances, challenges, and opportunities

doi: 10.1016/j.jpha.2024.101084
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 32270690 and 32070671) and the Postdoctor Research Fund of West China Hospital, Sichuan University, China (Grant No.: 2024HXBH059).

  • Received Date: May 09, 2024
  • Accepted Date: Aug. 22, 2024
  • Rev Recd Date: Aug. 12, 2024
  • Publish Date: Aug. 27, 2024
  • Protozoan infections (e.g., malaria, trypanosomiasis, and toxoplasmosis) pose a considerable global burden on public health and socioeconomic problems, leading to high rates of morbidity and mortality. Due to the limited arsenal of effective drugs for these diseases, which are associated with devastating side effects and escalating drug resistance, there is an urgent need for innovative antiprotozoal drugs. The emergence of drug repurposing offers a low-cost approach to discovering new therapies for protozoan diseases. In this review, we summarize recent advances in drug repurposing for various human protozoan diseases and explore cost-effective strategies to identify viable new treatments. We highlight the cross-applicability of repurposed drugs across diverse diseases and harness common chemical motifs to provide new insights into drug design, facilitating the discovery of new antiprotozoal drugs. Challenges and opportunities in the field are discussed, delineating novel directions for ongoing and future research.

  • loading
  • [1]
    H.L.C. Santos, K.M. Rebello, An overview of mucosa-associated protozoa: Challenges in chemotherapy and future perspectives, Front. Cell. Infect. Microbiol. 12 (2022), 860442.
    [2]
    Nisha, V. Mehra, M. Hopper, et al., Design and synthesis of β-amino alcohol based β-lactam-isatin chimeras and preliminary analysis of in vitro activity against the protozoal pathogen Trichomonas vaginalis, Med. Chem. Commun. 4 (2013) 1018-1024.
    [3]
    S.S. Santos, R.V. de Araujo, J. Giarolla, et al., Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review, Int. J. Antimicrob. Agents 55 (2020), 105906.
    [4]
    S. Consalvi, C. Tammaro, F. Appetecchia, et al., Malaria transmission blocking compounds: A patent review, Expert Opin. Ther. Pat. 32 (2022) 649-666.
    [5]
    M. Vallejo, P.P. Reyes, M. Martinez Garcia, et al., Trypanocidal drugs for late-stage, symptomatic Chagas disease (Trypanosoma cruzi infection), Cochrane Database Syst. Rev. 12 (2020), CD004102.
    [6]
    V. Roquini, A.C. Mengarda, R.A. Cajas, et al., The existing drug nifuroxazide as an antischistosomal agent: In vitro, in vivo, and in silico studies of macromolecular targets, Microbiol. Spectr. 11 (2023), e0139323.
    [7]
    E.O.J. Porta, K. Kalesh, P.G. Steel, Navigating drug repurposing for chagas disease: Advances, challenges, and opportunities, Front. Pharmacol. 14 (2023), 1233253.
    [8]
    D. Fontinha, I. Moules, M. Prudencio, Repurposing drugs to fight hepatic malaria parasites, Molecules 25 (2020), 3409.
    [9]
    L.N. Alberca, M.L. Sbaraglini, D. Balcazar, et al., Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning, J. Comput. Aided Mol. Des. 30 (2016) 305-321.
    [10]
    J. Yu, Q. Dai, G. Li, Deep learning in target prediction and drug repositioning: Recent advances and challenges, Drug Discov. Today 27 (2022) 1796-1814.
    [11]
    P.P. Parvatikar, S. Patil, K. Khaparkhuntikar, et al., Artificial intelligence: Machine learning approach for screening large database and drug discovery, Antivir. Res. 220 (2023), 105740.
    [12]
    K.T. Andrews, G. Fisher, T.S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, Int. J. Parasitol. Drugs Drug Resist. 4 (2014) 95-111.
    [13]
    S.M. Lee, M.S. Kim, F. Hayat, et al., Recent advances in the discovery of novel antiprotozoal agents, Molecules 24 (2019), 3886.
    [14]
    E. Vannier, B.E. Gewurz, P.J. Krause, Human babesiosis, Infect. Dis. Clin. N Am 22 (2008) 469-488.
    [15]
    A.K. Mitra, A.R. Mawson, Neglected tropical diseases: Epidemiology and global burden, Trop. Med. Infect. Dis. 2 (2017), 36.
    [16]
    N.M. Pazhayam, J. Chhibber-Goel, A. Sharma, New leads for drug repurposing against malaria, Drug Discov. Today 24 (2019) 263-271.
    [17]
    C.T. Supuran, Antiprotozoal drugs: Challenges and opportunities, Expert Opin. Ther. Pat. 33 (2023) 133-136.
    [18]
    M. Parsons, E.A. Worthey, P.N. Ward, et al., Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi, BMC Genomics 6 (2005), 127.
    [19]
    N. Suresh, K. Haldar, Mechanisms of artemisinin resistance in Plasmodium falciparum malaria, Curr. Opin. Pharmacol. 42 (2018) 46-54.
    [20]
    B. Hanboonkunupakarn, J. Tarning, S. Pukrittayakamee, et al., Artemisinin resistance and malaria elimination: Where are we now? Front. Pharmacol. 13 (2022), 876282.
    [21]
    S. Gonzalez, R.J. Wall, J. Thomas, et al., Short-course combination treatment for experimental chronic Chagas disease, Sci. Transl. Med. 15 (2023), eadg8105.
    [22]
    J.A. Perez-Molina, I. Molina, Chagas disease, Lancet 391 (2018) 82-94.
    [23]
    P. Buscher, G. Cecchi, V. Jamonneau, et al., Human African trypanosomiasis, Lancet 390 (2017) 2397-2409.
    [24]
    P.D. Ready, Epidemiology of visceral leishmaniasis, Clin. Epidemiol. 6 (2014) 147-154.
    [25]
    K. Yadav, R. Shivahare, S.H. Shaham, et al., Repurposing of existing therapeutics to combat drug-resistant malaria, Biomed. Pharmacother. 136 (2021), 111275.
    [26]
    R. Sudhakar, N. Adhikari, S. Pamnani, et al., Bazedoxifene, a postmenopausal drug, acts as an antimalarial and inhibits hemozoin formation, Microbiol. Spectr. 10 (2022), e0278121.
    [27]
    A.C.C. de Sousa, K. Maepa, J.M. Combrinck, et al., Lapatinib, nilotinib and lomitapide inhibit haemozoin formation in malaria parasites, Molecules 25 (2020), 1571.
    [28]
    S. Shafi, S. Gupta, R. Jain, et al., Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing, Biochem. Pharmacol. 215 (2023), 115756.
    [29]
    K. Verma, A.K. Lahariya, S. Dubey, et al., An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3-kinase, J. Cell. Biochem. 122 (2021) 1326-1336.
    [30]
    I.M. Vera, M.T. Grilo Ruivo, L.F. Lemos Rocha, et al., Targeting liver stage malaria with metformin, JCI Insight 4 (2019), e127441.
    [31]
    L.T. Ferreira, J. Rodrigues, G.C. Cassiano, et al., Computational chemogenomics drug repositioning strategy enables the discovery of epirubicin as a new repurposed hit for Plasmodium falciparum and P. vivax, Antimicrob. Agents Chemother. 64 (2020), e02041-19.
    [32]
    A. Weinstock, J. Gallego-Delgado, C. Gomes, et al., Tamoxifen activity against Plasmodium in vitro and in mice, Malar. J. 18 (2019), 378.
    [33]
    M.F. Adasme, S.N. Bolz, L. Adelmann, et al., Repositioned drugs for Chagas disease unveiled via structure-based drug repositioning, Int. J. Mol. Sci. 21 (2020), 8809.
    [34]
    A. Juarez-Saldivar, M. Schroeder, S. Salentin, et al., Computational drug repositioning for chagas disease using protein-ligand interaction profiling, Int. J. Mol. Sci. 21 (2020), 4270.
    [35]
    F. Galceran, F.A. Digirolamo, M. Rengifo, et al., Identifying inhibitors of Trypanosoma cruzi nucleoside diphosphate kinase 1 as potential repurposed drugs for Chagas’ disease, Biochem. Pharmacol. 216 (2023), 115766.
    [36]
    A. Juarez-Saldivar, R. Gomez-Escobedo, G. Corral-Ruiz, et al., Repositioning FDA-approved drug against Chagas disease and cutaneous leishmaniosis by structure-based virtual screening, Arch. Med. Res. 55 (2024), 102958.
    [37]
    M. Saye, L. Gauna, E. Valera-Vera, et al., Crystal violet structural analogues identified by in silico drug repositioning present anti-Trypanosoma cruzi activity through inhibition of proline transporter TcAAAP069, PLoS Negl. Trop. Dis. 14 (2020), e0007481.
    [38]
    C. Reigada, E.A. Valera-Vera, M. Saye, et al., Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi, PLoS Negl. Trop. Dis. 11 (2017), e0005472.
    [39]
    M.S. Rial, C. Reigada, N. Prado, et al., Effectiveness of the repurposed drug isotretinoin in an experimental murine model of Chagas disease, Acta Trop. 242 (2023), 106920.
    [40]
    C.V. Rivero, S.J. Martinez, P. Novick, et al., Repurposing carvedilol as a novel inhibitor of the Trypanosoma cruzi autophagy flux that affects parasite replication and survival, Front. Cell. Infect. Microbiol. 11 (2021), 657257.
    [41]
    I.T.S. Correa, T.A. da Costa-Silva, A.G. Tempone, Bioenergetics impairment of Trypanosoma cruzi by the antihypertensive manidipine: A drug repurposing strategy, Acta Trop. 214 (2021), 105768.
    [42]
    M. Arce-Fonseca, R.A. Gutierrez-Ocejo, J.L. Rosales-Encina, et al., Nitazoxanide: A drug repositioning compound with potential use in Chagas disease in a murine model, Pharmaceuticals 16 (2023), 826.
    [43]
    M. Sterkel, L.R. Haines, A. Casas-Sanchez, et al., Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis, PLoS Biol. 19 (2021), e3000796.
    [44]
    M.L. Lima, M.A. Abengozar, E.C. Torres-Santos, et al., Energy metabolism as a target for cyclobenzaprine: A drug candidate against visceral leishmaniasis, Bioorg. Chem. 127 (2022), 106009.
    [45]
    E.S. Yamamoto, J.A. de Jesus, A. Bezerra-Souza, et al., Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp, Bioorg. Chem. 102 (2020), 104056.
    [46]
    P. Rai, H. Arya, S. Saha, et al., Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches, J. Biomol. Struct. Dyn. 40 (2022) 10812-10820.
    [47]
    M. Nath, D. Bhowmik, S. Saha, et al., Identification of potential inhibitor against Leishmania donovani mitochondrial DNA primase through in-silico and in vitro drug repurposing approaches, Sci. Rep. 14 (2024), 3246.
    [48]
    M.L. Lima, M. Amaral, S.E.T. Borborema, et al., Evaluation of antileishmanial potential of the antidepressant escitalopram in Leishmania infantum, J. Pharm. Biomed. Anal. 209 (2022), 114469.
    [49]
    L.M.R. Antinarelli, V. Midlej, E.D.S. da Silva, et al., Exploring the repositioning of the amodiaquine as potential drug against visceral leishmaniasis: The in vitro effect against Leishmania infantum is associated with multiple mechanisms, involving mitochondria dysfunction, oxidative stress and loss of cell cycle control, Chem. Biol. Interact. 371 (2023), 110333.
    [50]
    R.R. Costa, J.A. Oliveira-da-Silva, T.A.R. Reis, et al., Acarbose presents in vitro and in vivo antileishmanial activity against Leishmania infantum and is a promising therapeutic candidate against visceral leishmaniasis, Med. Microbiol. Immunol. 210 (2021) 133-147.
    [51]
    J.G.M. Mina, R.L. Charlton, E. Alpizar-Sosa, et al., Antileishmanial chemotherapy through clemastine fumarate mediated inhibition of the Leishmania inositol phosphorylceramide synthase, ACS Infect. Dis. 7 (2021) 47-63.
    [52]
    J.M. Ribeiro, M.L. Rodrigues-Alves, E. Oliveira, et al., Pamidronate, a promising repositioning drug to treat leishmaniasis, displays antileishmanial and immunomodulatory potential, Int. Immunopharmacol. 110 (2022), 108952.
    [53]
    N.R.D.L.P. Rossi, S.N. Fialho, A.J. Gouveia, et al., Quinine and chloroquine: Potential preclinical candidates for the treatment of tegumentary leishmaniasis, Acta Trop. 252 (2024), 107143.
    [54]
    S. Sifontes-Rodriguez, N. Mollineda-Diogo, L. Monzote-Fidalgo, et al., In vitro and in vivo antileishmanial activity of thioridazine, Acta Parasitol. 69 (2024) 324-331.
    [55]
    V. Kumar, S. Kumari, R. Ranjan, et al., In vitro antileishmanial activity of thioridazine on amphotericin B unresponsive/sensitive Leishmania donovani promastigotes and intracellular amastigotes, Exp. Parasitol. 257 (2024), 108688.
    [56]
    F. Lanternier, K. Amazzough, L. Favennec, et al., Cryptosporidium spp. infection in solid organ transplantation: The nationwide, Transplantation 101 (2017) 826-830.
    [57]
    M.G. Nava, F. Calderon, E. Fernandez, et al., Tyrosine kinase inhibitors display potent activity against Cryptosporidium parvum, Microbiol. Spectr. 11 (2023), e0387422.
    [58]
    A. Diptyanusa, I.P. Sari, Treatment of human intestinal cryptosporidiosis: A review of published clinical trials, Int. J. Parasitol. Drugs Drug Resist. 17 (2021) 128-138.
    [59]
    C. Gaona-Lopez, A.V. Martinez-Vazquez, J.C. Villalobos-Rocha, et al., Analysis of Giardia lamblia nucleolus as drug target: A review, Pharmaceuticals (Basel) 16 (2023), 1168.
    [60]
    C.A. Lobo, M. Singh, M. Rodriguez, Human babesiosis: Recent advances and future challenges, Curr. Opin. Hematol. 27 (2020) 399-405.
    [61]
    M. Liu, D. Zhang, D. Wang, et al., Cost-effective in vivo and in vitro mouse models for evaluating anticryptosporidial drug efficacy: Assessing vorinostat, docetaxel, and baicalein, J. Infect. Dis. 228 (2023) 1430-1440.
    [62]
    K. Bessoff, A. Sateriale, K.K. Lee, et al., Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth, Antimicrob. Agents Chemother. 57 (2013) 1804-1814.
    [63]
    C. Fernandez-Lainez, I. de la Mora-de la Mora, I. Garcia-Torres, et al., Multilevel approach for the treatment of giardiasis by targeting arginine deiminase, Int. J. Mol. Sci. 22 (2021), 9491.
    [64]
    A. Castillo-Villanueva, Y. Rufino-Gonzalez, S.T. Mendez, et al., Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential, Int. J. Parasitol. Drugs Drug Resist. 7 (2017) 425-432.
    [65]
    A. Juarez-Saldivar, E. Barbosa-Cabrera, E.E. Lara-Ramirez, et al., Virtual screening of FDA-approved drugs against triose phosphate isomerase from Entamoeba histolytica and Giardia lamblia identifies inhibitors of their trophozoite growth phase, Int. J. Mol. Sci. 22 (2021), 5943.
    [66]
    M. Liu, S. Ji, D. Kondoh, et al., Tafenoquine is a promising drug candidate for the treatment of babesiosis, Antimicrob. Agents Chemother. 65 (2021), e0020421.
    [67]
    M. Montazeri, S. Mehrzadi, M. Sharif, et al., Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review, Parasitol. Res. 117 (2018) 3045-3057.
    [68]
    M. Roy, S. Chakraborty, S. Kumar Srivastava, et al., Entamoeba histolytica induced NETosis and the dual role of NETs in amoebiasis, Int. Immunopharmacol. 118 (2023), 110100.
    [69]
    M.M. Corvi, F. Rossi, A. Ganuza, et al., Triclabendazole and clofazimine reduce replication and spermine uptake in vitro in Toxoplasma gondii, Parasitol. Res. 123 (2023), 69.
    [70]
    B.M. El Sharazly, I.A. Aboul Asaad, N.A. Yassen, et al., Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis, Acta Trop. 239 (2023), 106810.
    [71]
    I.F. Abou-El-Naga, N.M.F.H. Mogahed, Repurposing auranofin for treatment of experimental cerebral toxoplasmosis, Acta Parasitol. 66 (2021) 827-836.
    [72]
    Y. Shi, Y. Jiang, H. Qiu, et al., Mitochondrial dysfunction induced by bedaquiline as an anti-Toxoplasma alternative, Vet. Res. 54 (2023), 123.
    [73]
    I. Benmerzouga, L.A. Checkley, M.T. Ferdig, et al., Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis, Antimicrob. Agents Chemother. 59 (2015) 6939-6945.
    [74]
    S. Ghosh, L. Farr, A. Singh, et al., COP9 signalosome is an essential and druggable parasite target that regulates protein degradation, PLoS Pathog. 16 (2020), e1008952.
    [75]
    I.A. Rangel-Castaneda, A. Castillo-Romero, G. Leon-Avila, et al., Drug repositioning: Antiprotozoal activity of terfenadine against Entamoeba histolytica trophozoites, Parasitol. Res. 121 (2022) 303-309.
    [76]
    B. Tuvshintulga, E. Vannier, D.S. Tayebwa, et al., Clofazimine, a promising drug for the treatment of Babesia microti infection in severely immunocompromised hosts, J. Infect. Dis. 222 (2020) 1027-1036.
    [77]
    P.I. Tam, S.L.M. Arnold, L.K. Barrett, et al., Clofazimine for treatment of cryptosporidiosis in human immunodeficiency virus infected adults: An experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial, Clin. Infect. Dis. 73 (2021) 183-191.
    [78]
    C.X. Zhang, M.S. Love, C.W. McNamara, et al., Pharmacokinetics and pharmacodynamics of clofazimine for treatment of cryptosporidiosis, Antimicrob. Agents Chemother. 66 (2022), e0156021.
    [79]
    K.A. Bachovchin, A. Sharma, S. Bag, et al., Improvement of aqueous solubility of lapatinib-derived analogues: Identification of a quinolinimine lead for human African trypanosomiasis drug development, J. Med. Chem. 62 (2019) 665-687.
    [80]
    P. Yadav, K. Shah, Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry, Bioorg. Chem. 109 (2021), 104639.
    [81]
    D.G.I. Kingston, M.B. Cassera, Antimalarial natural products, Prog. Chem. Org. Nat. Prod. 117 (2022) 1-106.
    [82]
    C.S. Freitas, D.P. Lage, J.A. Oliveira-da-Silva, et al., In vitro and in vivo antileishmanial activity of β-acetyl-digitoxin, a cardenolide of Digitalis lanata potentially useful to treat visceral leishmaniasis, Parasite 28 (2021), 38.
    [83]
    F. Khadir, T. Taheri, S. Habibzadeh, et al., Antileishmanial effect of rapamycin as an alternative approach to control Leishmania tropica infection, Vet. Parasitol. 276 (2019), 108976.
    [84]
    M.H.B. Kabir, F.C. Recuenco, N.K. Mohd Zin, et al., Identification of potent anti-Cryptosporidium new drug leads by screening traditional Chinese medicines, PLoS Negl. Trop. Dis. 16 (2022), e0010947.
    [85]
    W. Sun, P.E. Sanderson, W. Zheng, Drug combination therapy increases successful drug repositioning, Drug Discov. Today 21 (2016) 1189-1195.
    [86]
    R.P. Pandey, M.S. Nascimento, C.H. Franco, et al., Drug repurposing in chagas disease: Chloroquine potentiates benznidazole activity against Trypanosoma cruzi in vitro and in vivo, Antimicrob. Agents Chemother. 66 (2022), e0028422.
    [87]
    J.M.C. Barbosa, Y. Pedra-Rezende, L.D. Pereira, et al., Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells, Front. Cell. Infect. Microbiol. 12 (2022), 975931.
    [88]
    J.E.N. Gulin, M.M.C. Bisio, D. Rocco, et al., Miltefosine and benznidazole combination improve anti-Trypanosoma cruzi in vitro and in vivo efficacy, Front. Cell. Infect. Microbiol. 12 (2022), 855119.
    [89]
    E. Melcon-Fernandez, G. Galli, C. Garcia-Estrada, et al., Miltefosine and nifuratel combination: A promising therapy for the treatment of Leishmania donovani visceral leishmaniasis, Int. J. Mol. Sci. 24 (2023), 1635.
    [90]
    B.S. Borges, G.P. Bueno, F. Tomiotto-Pellissier, et al., In vitro anti-Leishmania activity of triclabendazole and its synergic effect with amphotericin B, Front. Cell. Infect. Microbiol. 12 (2022), 1044665.
    [91]
    B. Tuvshintulga, T. Sivakumar, A.B. Nugraha, et al., Combination of clofazimine and atovaquone as a potent therapeutic regimen for the radical cure of Babesia microti infection in immunocompromised hosts, J. Infect. Dis. 225 (2022) 238-242.
    [92]
    S. Duffy, M.L. Sykes, A.J. Jones, et al., Screening the medicines for malaria venture pathogen box across multiple pathogens reclassifies starting points for open-source drug discovery, Antimicrob. Agents Chemother. 61 (2017), e00379-17.
    [93]
    M. Maccesi, P.H.N. Aguiar, V. Pasche, et al., Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery, Parasit. Vectors 12 (2019), 493.
    [94]
    D. Cantillon, A. Goff, S. Taylor, et al., Searching for new therapeutic options for the uncommon pathogen Mycobacterium chimaera: An open drug discovery approach, Lancet Microbe 3 (2022) e382-e391.
    [95]
    B. Pan, H. Weerasinghe, A. Sezmis, et al., Leveraging the MMV pathogen box to engineer an antifungal compound with improved efficacy and selectivity against Candida auris, ACS Infect. Dis. 9 (2023) 1901-1917.
    [96]
    M.F. Canever, L.C. Miletti, Screening and identification of pathogen box® compounds with anti-Trypanosoma evansi activity, Acta Trop. 206 (2020), 105421.
    [97]
    F.F. Boyom, P.V. Fokou, L.R. Tchokouaha, et al., Repurposing the open access malaria box to discover potent inhibitors of Toxoplasma gondii and Entamoeba histolytica, Antimicrob. Agents Chemother. 58 (2014) 5848-5854.
    [98]
    A. Lopez-Arencibia, I. Sifaoui, M. Reyes-Batlle, et al., Discovery of new chemical tools against Leishmania amazonensis via the MMV pathogen box, Pharmaceuticals (Basel) 14 (2021), 1219.
    [99]
    S. Qiao, S. Tao, M. Rojo de la Vega, et al., The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death, Autophagy 9 (2013) 2087-2102.
    [100]
    X. Xu, J. Wang, K. Han, et al., Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells, Cancer Sci. 109 (2018) 1220-1229.
    [101]
    L.F. Zerbini, M.K. Bhasin, J.F. de Vasconcellos, et al., Computational repositioning and preclinical validation of pentamidine for renal cell cancer, Mol. Cancer Ther. 13 (2014) 1929-1941.
    [102]
    D. Duarte, M. Nunes, S. Ricardo, et al., Combination of antimalarial and CNS drugs with antineoplastic agents in MCF-7 breast and HT-29 colon cancer cells: Biosafety evaluation and mechanism of action, Biomolecules 12 (2022), 1490.
    [103]
    D. Duarte, N. Vale, New trends for antimalarial drugs: Synergism between antineoplastics and antimalarials on breast cancer cells, Biomolecules 10 (2020), 1623.
    [104]
    Y. Guo, Y. Cheng, H. Li, et al., The potential of artemisinins as novel treatment for thyroid eye disease by inhibiting adipogenesis in orbital fibroblasts, Invest. Ophthalmol. Vis. Sci. 64 (2023), 28.
    [105]
    J. Ma, J. Jing, J. Wang, et al., A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients, Arthritis Res. Ther. 21 (2019), 153.
    [106]
    E. Schrezenmeier, T. Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology, Nat. Rev. Rheumatol. 16 (2020) 155-166.
    [107]
    X. Yao, F. Ye, M. Zhang, et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis. 71 (2020) 732-739.
    [108]
    R. Cao, H. Hu, Y. Li, et al., Anti-SARS-CoV-2 potential of artemisinins in vitro, ACS Infect. Dis. 6 (2020) 2524-2531.
    [109]
    C. Sachdeva, A. Wadhwa, A. Kumari, et al., In silico potential of approved antimalarial drugs for repurposing against COVID-19, OMICS 24 (2020) 568-580.
    [110]
    Y. Han, H.T. Pham, H. Xu, et al., Antimalarial drugs and their metabolites are potent Zika virus inhibitors, J. Med. Virol. 91 (2019) 1182-1190.
    [111]
    S. Boonyasuppayakorn, E.D. Reichert, M. Manzano, et al., Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity, Antiviral Res. 106 (2014) 125-134.
    [112]
    M.C. Montoya, S. Beattie, K.M. Alden, et al., Derivatives of the antimalarial drug mefloquine are broad-spectrum antifungal molecules with activity against drug-resistant clinical isolates, Antimicrob. Agents Chemother. 64 (2020), e02331-19.
    [113]
    J.M. Belardinelli, D. Verma, W. Li, et al., Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in Mycobacterium abscessus, Sci. Transl. Med. 14 (2022), eabj3860.
    [114]
    P. She, Y. Yang, L. Li, et al., Repurposing of the antimalarial agent tafenoquine to combat MRSA, mSystems 8 (2023), e0102623.
    [115]
    V.V. Kulkarny, A. Chavez-Dozal, H.S. Rane, et al., Quinacrine inhibits Candida albicans growth and filamentation at neutral pH, Antimicrob. Agents Chemother. 58 (2014) 7501-7509.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (172) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return