Citation: | Yacong Ji, Chongyang Li, Sicheng Wan, Zhen Dong, Chaolong Liu, Leiyang Guo, Shaomin Shi, Mingxin Ci, Minghao Xu, Qian Li, Huanrong Hu, Hongjuan Cui, Yaling Liu. Tetrandrine targeting SIRT5 exerts anti-melanoma properties via inducing ROS, ER stress, and blocked autophagy[J]. Journal of Pharmaceutical Analysis, 2024, 14(10): 101036. doi: 10.1016/j.jpha.2024.101036 |
Tetrandrine (TET), a natural bisbenzyl isoquinoline alkaloid extracted from Stephania tetrandra S. Moore, has diverse pharmacological effects. However, its effects on melanoma remain unclear. Cellular proliferation assays, multi-omics analyses, and xenograft models were used to determine the effect of TET on melanoma. The direct target of TET was identified using biotin-TET pull-down liquid chromatograph-mass spectrometry (LC-MS), cellular thermal shift assays, and isothermal titration calorimetry (ITC) analysis. Our findings revealed that TET treatment induced robust cellular autophagy depending on activating transcription factor 6 (ATF6)-mediated endoplasmic reticulum (ER) stress. Simultaneously, it hindered autophagic flux by inducing cytoskeletal protein depolymerization in melanoma cells. TET treatment resulted in excessive accumulation of reactive oxygen species (ROS) and simultaneously triggered mitophagy. Sirtuin 5 (SIRT5) was ultimately found to be a direct target of TET. Mechanistically, TET led to the degradation of SIRT5 via the ubiquitin (Ub)-26S proteasome system. SIRT5 knockdown induced ROS accumulation, whereas SIRT5 overexpression attenuated the TET-induced ROS accumulation and autophagy. Importantly, TET exhibited anti-cancer effects in xenograft models depending on SIRT5 expression. This study highlights the potential of TET as an antimelanoma agent that targets SIRT5. These findings provide a promising avenue for the use of TET in melanoma treatment and underscore its potential as a therapeutic candidate.
[1] |
R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2022, CA A Cancer J. Clin. 72 (2022) 7-33.
|
[2] |
M. Chanda, M.S. Cohen, Advances in the discovery and development of melanoma drug therapies, Expert Opin. Drug Discov. 16 (2021) 1319-1347.
|
[3] |
B.E. Nelson, J. Roszik, F. Janku, et al., BRAF v600E-mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study, NPJ Precis. Oncol. 7 (2023), 19.
|
[4] |
J. Guo, R.D. Carvajal, R. Dummer, et al., Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: Final results from the global, single-arm, phase II TEAM trial, Ann. Oncol. 28 (2017) 1380-1387.
|
[5] |
J.Y. Blay, L. Shen, Y.K. Kang, et al., Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): A randomised phase 3 trial, Lancet Oncol. 16 (2015) 550-560.
|
[6] |
Roskoski. R. Jr., Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas, Pharmacol. Res. 117 (2017) 20-31.
|
[7] |
A. Boespflug, L. Thomas, Cobimetinib and vemurafenib for the treatment of melanoma, Expert Opin. Pharmacother. 17 (2016) 1005-1011.
|
[8] |
F. Abdi, E. Arkan, M. Eidizadeh, et al., The possibility of angiogenesis inhibition in cutaneous melanoma by bevacizumab-loaded lipid-chitosan nanoparticles, Drug Deliv. Transl. Res. 13 (2023) 568-579.
|
[9] |
J.R. Brahmer, C. Lacchetti, B.J. Schneider, et al., National Comprehensive Cancer Network, Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline, J. Clin. Oncol. 36 (2018) 1714-1768.
|
[10] |
C. Fellner, Ipilimumab (yervoy) prolongs survival in advanced melanoma: Serious side effects and a hefty price tag may limit its use, P T 37 (2012) 503-530.
|
[11] |
A. Zaremba, A.M.M. Eggermont, C. Robert, et al., The concepts of rechallenge and retreatment with immune checkpoint blockade in melanoma patients, Eur. J. Cancer 155 (2021) 268-280.
|
[12] |
H. Zou, T. He, X. Chen, Tetrandrine inhibits differentiation of proinflammatory subsets of T helper cells but spares de novo differentiation of iTreg cells, Int. Immunopharmacol. 69 (2019) 307-312.
|
[13] |
W.-X. Yao, M.-X. Jiang, Effects of tetrandrine on cardiovascular electrophysiologic properties, Acta Pharmacol. Sin. 23 (2002) 1069-1074.
|
[14] |
B. Kou, W. Liu, X. Xu, et al., Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells, Oncol. Rep. 38 (2017) 3137-3143.
|
[15] |
G.N. van Muijen, K.F. Jansen, I.M. Cornelissen, et al., Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice, Int. J. Cancer 48 (1991) 85-91.
|
[16] |
J. Du, Z. Dong, L. Tan, et al., Tubeimoside I inhibits cell proliferation and induces a partly disrupted and cytoprotective autophagy through rapidly hyperactivation of MEK1/2-ERK1/2 cascade via promoting PTP1B in melanoma, Front. Cell Dev. Biol. 8 (2020), 607757.
|
[17] |
G. Zhang, Q. Zhu, G. Fu, et al., TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis, Br. J. Cancer 121 (2019) 1069-1078.
|
[18] |
Y. Zhang, J. Hou, S. Shi, et al., CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9, Cell Death Dis. 12 (2021), 118.
|
[19] |
P. Holland, A. Simonsen, Actin shapes the autophagosome, Nat. Cell Biol. 17 (2015) 1094-1096.
|
[20] |
N. Mi, Y. Chen, S. Wang, et al., CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane, Nat. Cell Biol. 17 (2015) 1112-1123.
|
[21] |
D. Trisciuoglio, F. Degrassi, The tubulin code and tubulin-modifying enzymes in autophagy and cancer, Cancers (Basel) 14 (2021), 6.
|
[22] |
Y. Wang, H. Chen, X. Zha, Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors, Eur. J. Med. Chem. 236 (2022), 114363.
|
[23] |
S. Kumar, D.B. Lombard, Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology, Crit. Rev. Biochem. Mol. Biol. 53 (2018) 311-334.
|
[24] |
H. Guedouari, T. Daigle, L. Scorrano, et al., Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation, Biochim. Biophys. Acta Mol. Cell Res. 1864 (2017) 169-176.
|
[25] |
H. Moon, J. Zhu, A.C. White, Sirt5 is dispensable for BrafV600E-mediated cutaneous melanoma development and growth in vivo, Exp. Dermatol. 28 (2019) 83-85.
|
[26] |
W. Giblin, L. Bringman-Rodenbarger, A.H. Guo, et al., The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics, J. Clin. Invest. 131 (2021), e138926.
|
[27] |
X. Wang, Y. Chen, J. Li, et al., Tetrandrine, a novel inhibitor of ether-a-go-go-1 (Eag1), targeted to cervical cancer development, J. Cell. Physiol. 234 (2019) 7161-7173.
|
[28] |
R. Meyer, R. Schonherr, O. Gavrilova-Ruch, et al., Identification of ether a go-go and calcium-activated potassium channels in human melanoma cells, J. Membr. Biol. 171 (1999) 107-115.
|
[29] |
L. Ferrera, R. Barbieri, C. Picco, et al., TRPM2 oxidation activates two distinct potassium channels in melanoma cells through intracellular calcium increase, Int. J. Mol. Sci. 22 (2021), 8359.
|
[30] |
V.K.W. Wong, W. Zeng, J. Chen, et al., Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms, Front. Pharmacol. 8 (2017), 351.
|
[31] |
Y. Guo, X. Pei, Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling, Evid. Based Complement. Alternat. Med. 2019 (2019), 7517431.
|
[32] |
W. Qiu, A.-L. Zhang, Y. Tian, Tetrandrine triggers an alternative autophagy in DU145 cells, Oncol. Lett. 13 (2017) 3734-3738.
|
[33] |
W. Qiu, M. Su, F. Xie, et al., Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells, Cell Death Dis. 5 (2014), e1123.
|
[34] |
E. Sato, S. Ohta, K. Kawakami, et al., Tetrandrine increases the sensitivity of human lung adenocarcinoma PC14 cells to gefitinib by lysosomal inhibition, Anticancer Res. 39 (2019) 6585-6593.
|
[35] |
H. Wang, T. Liu, L. Li, et al., Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species, Cell Biosci. 5 (2015), 4.
|
[36] |
L.F. Liu, N.M. Chen, G.P. Cai, et al., Studies on the effect of tetrandrine on microtubules. I. Biochemical observation and electron microscopy, Ecotoxicol. Environ. Saf. 15 (1988) 142-148.
|
[37] |
J. Wei, B. Liu, L. Wang, et al., Synergistic interaction between tetrandrine and chemotherapeutic agents and influence of tetrandrine on chemotherapeutic agent-associated genes in human gastric cancer cell lines, Cancer Chemother. Pharmacol. 60 (2007) 703-711.
|
[38] |
Y. Liu, W. Zhong, J. Zhang, et al., Tetrandrine modulates rheb-mTOR signaling-mediated selective autophagy and protects pulmonary fibrosis, Front. Pharmacol. 12 (2021), 739220.
|
[39] |
X. Li, Q. Jin, Y.-L. Wu, et al., Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling, Int. Immunopharmacol. 36 (2016) 263-270.
|
[40] |
Z. Zhong, Z. Qian, X. Zhang, et al., Tetrandrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis, Front. Pharmacol. 10 (2019), 1530.
|
[41] |
G. Wu, T. Liu, H. Li, et al., C-MYC and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation, Cell Death Dis. 9 (2018), 473.
|
[42] |
K. Gong, C. Chen, Y. Zhan, et al., Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma, J. Biol. Chem. 287 (2012) 35576-35588.
|
[43] |
N. Bhagya, K.R. Chandrashekar, A. Prabhu, et al., Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells, In Vitro Cell. Dev. Biol. Anim. 55 (2019) 331-340.
|
[44] |
W. Xiao, Y. Jiang, Q. Men, et al., Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo, Int. J. Oncol. 46 (2015) 360-368.
|
[45] |
Y. Yang, S. Karakhanova, W. Hartwig, et al., Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy, J. Cell. Physiol. 231 (2016) 2570-2581.
|
[46] |
L.W.C. Chow, K.-S. Cheng, F. Leong, et al., Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production, Naunyn Schmiedebergs Arch. Pharmacol. 392 (2019) 427-436.
|
[47] |
S. Zhu, Z. Dong, X. Ke, et al., The roles of sirtuins family in cell metabolism during tumor development, Semin. Cancer Biol. 57 (2019) 59-71.
|
[48] |
Z.-F. Lin, H.-B. Xu, J.-Y. Wang, et al., SIRT5 desuccinylates and activates SOD1 to eliminate ROS, Biochem. Biophys. Res. Commun. 441 (2013) 191-195.
|
[49] |
L. Zhou, F. Wang, R. Sun, et al., SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense, EMBO Rep. 17 (2016) 811-822.
|
[50] |
L. Polletta, E. Vernucci, I. Carnevale, et al., SIRT5 regulation of ammonia-induced autophagy and mitophagy, Autophagy 11 (2015) 253-270.
|